Skip to main content

Nitride and Silicide Negative Electrodes

  • Chapter
Lithium Batteries

The search for negative electrode materials which exhibit improved electrochemical properties relative to the widely used graphite intercalation materials has lead to a renaissance of research on inorganic negative electrodes.

The intercalation of Li+ into graphite follows the basic topotactic insertion process:

$$\rm Li^+ + e^- + C_6 LiC_6$$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Knutz, S. Skaarup, Solid State Ionics 9&10 (1983) 371.

    Google Scholar 

  2. P. M. Richards, J. Solid State Chem. 33 (1980) 127.

    Google Scholar 

  3. R. Bittihn, Solid State Ionics 8 (1983) 83.

    Google Scholar 

  4. M. Meyer, H. Rickert, U. Schwaitzer, Solid State Ionics 9&10 (1983) 689.

    Google Scholar 

  5. M. F. Bell, A. Breitschwerdt, U. Alpen, Mater. Res. Bull. 16 (1981) 267.

    Google Scholar 

  6. J. R. Rea, D.L. Foster, Mater. Res. Bull. 14 (1979) 841.

    Google Scholar 

  7. B. A. Boukamp, R. A. Huggins, Mater. Res. Bull. 13 (1978) 23.

    Google Scholar 

  8. H. Yamane, S. Kikkawa, M. Horiguchi, M. Koizumi, J. Solid State Chem. 65 (1986) 6.

    Google Scholar 

  9. R. Juza, H. H. Weber, E. Meyer-Simon, Z. Anorg. Allg. Chem. 48 (1953) 273.

    Article  CAS  Google Scholar 

  10. H. Yamane, S. Kikkawa, M. Koizumi, Solid State Ionics 25 (1987) 183.

    Google Scholar 

  11. S. Suzuki, T. Sodai, Solid State Ionics 116 (1999) 1.

    Google Scholar 

  12. M. Nishijima, Y. Takeda, N. Imanishi, O Yamamoto, N. Takano, J. Solid State Chem. 113(1994)205.

    Google Scholar 

  13. T. Asai, K. Nishida, S. Kawai, Mat. Res. Bull. 19 (1984) 1377.

    Google Scholar 

  14. M. Nishijima, T. Kagohashi, M. Imanishi, Y. Takeda, O. Yamamoto, S. Kondo, Solid State Ionics 83 (1996) 107.

    Google Scholar 

  15. T. Shodai, Y. Sakurai, T. Suzuki, Solid State Ionics 122 (1999) 85.

    Google Scholar 

  16. S. Suzuki, T. Shodai, J. Yamaki, J. Phys. Chem. Solids 59 (1998) 331.

    Google Scholar 

  17. J. Rowsell, V. Pralong, L. Nazar, J. Am. Chem. Soc. 123 (2001) 8598.

    Google Scholar 

  18. B. Neudecker, R. Zuhr, Electrochemical Society Proceedings 99–24, p. 295.

    Google Scholar 

  19. N. Pereira, M. Balasubramanian, L. Dupont, J. McBreen, L.C. Klein, G.G. Amatucci, submitted, J. Electrochem. Soc. (2002).

    Google Scholar 

  20. J.B. Bates, N.J. Dudney, B. Neudecker, A. Ueda, CD. Evans, Solid State Ionics 135 (2000) 33.

    Google Scholar 

  21. A. D. Pelton, J. Phase Equilibria 12 (1991) 42.

    Google Scholar 

  22. E. Zintl, A. Schneider, Z. Elektrochem. 41 (1935) 764.

    Google Scholar 

  23. N. Pereira, L. C. Klein, G.G. Amatucci, J. Electrochem. Soc. 149 (2002) A262.

    Google Scholar 

  24. N. Pereira, L. Dupont, J.M. Tarascon, L.C. Klein, G.G. Amatucci, submitted, J. Electrochem. Soc. (2002).

    Google Scholar 

  25. Y. Takeda, M. Nishijima, M. Yamahata, K. Takeda, N. Imanishi, O. Yamamoto, Solid State Ionics 130 (2000) 61.

    Google Scholar 

  26. R. A. Huggins, Solid State Ionics, in press (2002).

    Google Scholar 

  27. N. Pereira, Ph-D thesis, Rutgers University, December 2001.

    Google Scholar 

  28. A. Anani, R.A. Huggins, J. Power Sources 38 (1992) 351.

    Google Scholar 

  29. A. Anani, R.A. Huggins, J. Power Sources 38 (1992) 363.

    Google Scholar 

  30. US Patent 4,950,566.

    Google Scholar 

  31. C.K. Huang, B.V. Ratnakumar, S. Surampudi, G. Halpert, The Electrochemical Society Proceedings, Vol. 94–28, 361.

    Google Scholar 

  32. US Patent 5,294,503.

    Google Scholar 

  33. H. Kim, J. Choi, H.J. Sohn, T. Kang, J. Electrochem. Soc. 146 (1999) 4401.

    Google Scholar 

  34. T. Moriga, K. Watanabe, D. Tsuji, S. Massaki, I. Nakabayashi, J. Solid State Chem. 153 (2000) 386.

    Google Scholar 

  35. G.A. Roberts, E.J. Cairns, J.A. Reimer, J. Power Sources in press (2002).

    Google Scholar 

  36. W. J. Weydanz, M. Wohlfahrt-Mehrens, R.A. Huggins, J. Power Sources 81–82 (1999) 237.

    Google Scholar 

  37. W. G.X. Wand, L. Sun, D.H. Bradhurst, S. Zhong, S.X. Dou, H.K. Liu, J. Alloys and Comp. 306 (2000) 249.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC 2003, First softcover printing

About this chapter

Cite this chapter

Amatucci, G.G., Pereira, N. (2009). Nitride and Silicide Negative Electrodes. In: Nazri, GA., Pistoia, G. (eds) Lithium Batteries. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-92675-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-92675-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-92674-2

  • Online ISBN: 978-0-387-92675-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics