The Key Role of Nanoparticles in Reactivity of 3D Metal Oxides Toward Lithium

  • J-M. Tarascon
  • S. Grugeon
  • S. Laruelle
  • D. Larcher
  • P. Poizot

In response to the needs of today's mobile society and the emergence of ecological concerns such as global warming, one of the major technological challenges in this new century is undoubtedly energy generation and storage. Ninety percent of today's electrical power generation still comes from fossil fuels, and we are constantly struggling to reduce the carbon dioxide emissions per unit of electric power so as to help curtail global warming. It is now mandatory that new and environmentally friendly energy/storage sources be found. Hence, the fast developing research in that field involving, among others, fuel cells, primary and rechargeable batteries, and supercapacitors. As a result of this worldwide ecological priority, political concerns have come into play, and science has suffered from prioritisation based on both industrial pressure and media reports, rather than on the clear and rigorous scientific identification of technological stoppers inherent in each storage system. Needless to say, this applies to battery systems as well.

In the past two decades, intensive efforts have given birth to the rechargeable Li-ion battery technology that has dominated the market place, and can be regarded as one of the great successes in modern electrochemistry to date. But these Li-based systems still suffer from the lack of suitable electrode and electrolyte materials, which they require if they are ever to accommodate the increasing user's demands. Aware of this limitation, chemists have been acting at several levels to incrementally improve the Li-ion performance. They have followed a dual approach, dealing with either positive or negative electrode materials, with efforts centered around: 1) the modification of existing materials through cationic/anionic substitution, texture modification and surface treatments, 2) the making of composite electrodes or electrolytes made of several chemical components, and 3) the design of new electrode materials. Such approaches were pursued at the macroscopic scale on electrode materials1–3 having a dual electronic-ionic conductivity, a void structure to insert/de-insert Li ions, or the ability to alloy with Li. They led to the identification of layered LiMn1−x Cr x 02 oxides4–5 or three-dimensional iron phosphates (LiFeP04)6, that stand as a possible alternative to LiCo02 or negative electrode materials such as tin-based oxides (Sn02, SnO),7–8 intermetallics (CuSb9, Cu6Sn5 10, ...), nitrides11 and phosphides,12'13 which could be used as alternatives to carbonaceous materials, once their initial large irreversibility and poor cycle life have been overcome.


Global Warming Iron Phosphate Void Structure Negative Electrode Material Mobile Society 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.B. Armand, New Electrode Materials, in Fast Ion Transport in Solids (Van Gool, W., Ed., North Holland, Amsterdam) (1973) 665.Google Scholar
  2. 2.
    M. S. Whittingham, Science 192 (1976) 1226 .CrossRefGoogle Scholar
  3. 3.
    D. W. Murphy, P.A. Christian, Science 205 (1979) 651.CrossRefGoogle Scholar
  4. 4.
    A. R. Armstrong, P.G. Bruce, Nature 381 (1996) 499.CrossRefGoogle Scholar
  5. 5.
    B. Ammundsen, J. Desilvestro, T. Groutso, D. Hassel, J.B. Metson, E. Regan, R. Steiner, P.J. Pichering, ECS Fall Meeting, Hawai, Abstract N°138 (1999).Google Scholar
  6. 6.
    A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, J.B. Goodenough, J. Electrochem. Soc. 144(1997)1609.CrossRefGoogle Scholar
  7. 7.
    Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Science 276 (1997) 1395 .CrossRefGoogle Scholar
  8. 8.
    LA. Courtney, J.R. Dahn, J. Electrochem. Soc. 144 (1997) 2045.CrossRefGoogle Scholar
  9. 9.
    O. Mao, R.A. Dunlap, J.R. Dahn, J. Electrochem. Soc. 146 (1999) 405.CrossRefGoogle Scholar
  10. 10.
    K.D. Kepler, J.T. Vaughey, M.M. Thackeray, Electrochem. Solid-State Lett. 7 (1999) 307.CrossRefGoogle Scholar
  11. 11.
    N. Pereira, L.C. Klein, G.G.Amatucci, J. Electrochem. Soc. 149 (2002) A262.CrossRefGoogle Scholar
  12. 12.
    R. Alcantara, F. J. Fernandez-Madrigal, P. Lavela, J. L. Tirado, J-C. Jumas, J. Olivier-Fourcade, J. Mater. Chem. 9 (1999) 2517.CrossRefGoogle Scholar
  13. 13.
    V. Pralong, D.C.S. Souza, K.T. Leung, L.F. Nazar, Electrochem. Comm. 4 (2002) 516.CrossRefGoogle Scholar
  14. 14.
    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.-M. Tarascon., Nature 407 (2000) 496.CrossRefGoogle Scholar
  15. 15.
    G.G. Amatucci, J.M. Tarascon, L.C. Klein, J. Electrochem. Soc. 143 (1996) 1114.CrossRefGoogle Scholar
  16. 16.
    R. Bates, Y. Jumel, Lithium batteries J. P. Gabano Ed., Academic Press, London (1983).Google Scholar
  17. 17.
    Y. Matsuda, K. Teraji, Y. Takasu, Denki Kagaku 44 (1976) 363.Google Scholar
  18. 18.
    P. Novák, Electrochim. Acta 30 (1985) 1687.CrossRefGoogle Scholar
  19. 19.
    C. Sigala, D. Guyomard, Y. Piffard, M. Tournoux, C.R. Acad. Sci. Paris II 320 (1995) 523.Google Scholar
  20. 20.
    P. Poizot, E. Baudrin, S. Laruelle, L. Dupont, M. Touboul, J-M. Tarascon, Solid state Ionics 138 (2000) 31.CrossRefGoogle Scholar
  21. 21.
    E. Baudrin, S. Denis, F. Orsini, L. Seguin, M. Touboul, J-M. Tarascon, J. Mater. Chem. 9 (1999) 101.CrossRefGoogle Scholar
  22. 22.
    S. Denis, E. Baudrin, F. Orsini, G. Ouvrard, M. Touboul, J-M. Tarascon, J. Power Sources 81–82 (1999) 79.Google Scholar
  23. 23.
    23 E. Baudrin, S. Denis, S. Laruelle, M. Touboul, J-M. Tarascon, Solid State Ionics 123 (1999) 139.CrossRefGoogle Scholar
  24. 24.
    S. Laruelle, P. Poizot, E. Baudrin, V. Briois, M. Touboul, J-M.Tarascon, J. Power Sources 97–98 (2001) 251.Google Scholar
  25. 25.
    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.-M.Tarascon., Nature 407 (2000) 496.CrossRefGoogle Scholar
  26. 26.
    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, B. Beaudoin, J-M. Tarascon, C.R. Acad. Sci. Paris II, 3 (2000) 681.Google Scholar
  27. 27.
    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J-M. Tarascon, Ionics 6 (2000) 321.CrossRefGoogle Scholar
  28. 28.
    S. Grugeon, S. Laruelle, R. Herrera-Urbina, L. Dupont, P. Poizot, J-M. Tarascon, J. Electrochem. Soc. 148 (2001) A285.CrossRefGoogle Scholar
  29. 29.
    A. Débart, L. Dupont, P. Poizot, J-M. Tarascon, J. Electrochem. Soc. 148 (2001) A1266.CrossRefGoogle Scholar
  30. 30.
    P. Poizot, S. Laruelle, E. Baudrin, S. Denis, M. Touboul, J.-M. Tarascon, J. Power Sources 97–98 (2001) 235.CrossRefGoogle Scholar
  31. 31.
    N.N. Obrovac, R.A. Dunlap, R.J. Sanderson, J.R. Dahn, J. Electrochem. Soc. 148 (2001) A576.CrossRefGoogle Scholar
  32. 32.
    M.M. Thackeray, W.I.F. David, J.B. Goodenough, Mat. Res. Bull. 17 (1982) 785.CrossRefGoogle Scholar
  33. 33.
    M.M. Thackeray, W.I.F. David, J.B. Goodenough, J. Solid-State Chem. 55 (1984) 280.CrossRefGoogle Scholar
  34. 34.
    Standard Potentials in Aqueous Solution, A.J. Bard, R. Parsons, J. Jordan, Eds., Marcel Dekker (1985).Google Scholar
  35. 35.
    O. Kubaschewski, C. B. Alcok, Metallurgical Thermochemistry, 5th Edition, Pergamon Press (1987)Google Scholar
  36. 36.
    S. Laruelle, S. Grugeon, P. Poizot, M. Dollé, L. Dupont, J-M. Tarascon, J. Electrochem. Soc. 149 (2002) 627.CrossRefGoogle Scholar
  37. 37.
    P. Poizot, S. Laruelle, S. Grugeon, J-M. Tarascon, J. Electrochem. Soc. 149 (2002) 627.CrossRefGoogle Scholar
  38. 38.
    M. Dollé, P. Poizot, L. Dupont, J-M. Tarascon, Electrochem. Solid-State Lett. 5 (2002) A18.CrossRefGoogle Scholar
  39. 39.
    S. Grugeon, S. Laruelle, J.M. Tarascon, J. Electrochem. Soc. submitted (2002).Google Scholar
  40. 40.
    N. Pereira, L.C. Klein, G.G. Amatucci, ECS and ISE Joint International Meeting, San Francisco, CA, Sept. 2001, paper 203.Google Scholar
  41. 41.
    N.Pereira, L. Dupont, J.-M. Tarascon, L. Klein, G.G Amatucci, J. Electrochem. Soc. (in press).Google Scholar
  42. 42.
    F. Badway, I. Plitz, S. Grugeon, S. Laruelle, M. Dolle, A.S. Gozdz, J-M. Tarascon, Electrochem. Solid-State Lett. 5 (2002) A115.CrossRefGoogle Scholar
  43. 43.
    A. Delahaye-Vidal, B. Beaudoin, M. Figlarz, Reactivity Solids 2 (1986) 223.CrossRefGoogle Scholar
  44. 44.
    W.I.F. David, J.B. Goodenough, M.M. Thackeray, M.G.S.R. Thomas, Rev. Chim. Miner. 20(1983)636.Google Scholar
  45. 45.
    M.M. Thackeray, W.I.F. David, J.B. Goodenough, Mat. Res. Bull 17 (1982) 785.CrossRefGoogle Scholar
  46. 46.
    M.M. Thackeray, W.I.F. David, P.G. Bruce, J.B. Goodenough, Mat. Res. Bull. 18 (1983)461.CrossRefGoogle Scholar
  47. 47.
    M.M. Thackeray, S.D. Backer, K.T. Adendorff, Solid State Ionics 17 (1985) 175.CrossRefGoogle Scholar
  48. 48.
    D. Larcher, G. Sudant, J-B. Leriche, Y. Chabre, J-M. Tarascon, J. Electrochem. Soc. 149 (2002) A234.CrossRefGoogle Scholar
  49. 49.
    D. Larcher, C. Masquelier, D. Bonnin, Y. Chabre, V. Masson, J-B. Leriche, J-M. Tarascon, J. Electrochem. Soc. submitted (2002).Google Scholar
  50. 50.
    M.M. Thackeray, J. Coetzer, Mat. Res. Bull 16 (1981) 591.CrossRefGoogle Scholar
  51. 51.
    J.-M.Tarascon, M. Morcrette, L. Dupont, Y. Chabre, C. Payen, D. Larcher, V. Pralong, j. Electrochem. Soc. in press (2003).Google Scholar
  52. 52.
    D. Larcher, L.Y. Beaulieu, O. Mao, A.E. George, J.R. Dahn, J. Electrochem. Soc. 147 (2000) 1703.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2003, First softcover printing 2009

Authors and Affiliations

  • J-M. Tarascon
    • 1
  • S. Grugeon
    • 1
  • S. Laruelle
    • 1
  • D. Larcher
    • 1
  • P. Poizot
    • 1
  1. 1.Laboratoire de Réactivité et Chimie des SolidesUniversité de Picardie Jules Verne and CNRS (UMR-6007)AmiensFrance

Personalised recommendations