Graphite-Electrolyte Interface in Lithium-Ion Batteries

  • M. Nazri
  • B. Yebka
  • G.-A. Nazri

The recent commercialization of advanced lithium batteries is mainly due to the breakthrough in the stabilization of the anode-electrolyte interface. Although metallic lithium has an energy density (3860 mAh/g) higher than that of other alternative anodes, its poor performance and safety issues related to the low melting point of lithium (180 °C), dendritic growth during lithium deposition (charge), and high reactivity toward the electrolytes have hindered the commercialization of rechargeable lithium-anode batteries.

There have been several approaches to solve the problem of lithium anode. The development of lithium alloys, particularly the binary and ternary alloys, has received considerable attention (see Chapter 9 of this book). However, the performance of these alloys is unsatisfactory mainly due to the large volume change (100–200%) during lithiation and delithiation processes. This expansion and contraction processes may cause the alloy particles to crack and lose contact with the electrode substrate. In addition, the lithium alloys with high concentration of lithium are very reactive toward the electrolytes and cause decomposition. Therefore a problem similar to that of the metallic lithium also exists for Li-alloy anodes. Recently, some success has been made using intermetallic alloys such as Cu6Sn5 that insert lithium topotactically over a wide composition range Li x Cu6Sn5 (0<x<13).1 Despite the good volumetric energy density of these alloys, their gravimetric energy density is poor and there is a significant capacity loss during multiple cycling.


Energy Density Lithium Batterie Alloy Particle Intermetallic Alloy Contraction Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.M. Thackeray, J.T. Vaughey, A.J. Kahaian, K.D. Kepler, R. Benedek, Electrochem. Comm. 1(1999)111.CrossRefGoogle Scholar
  2. 2.
    J. Akimoto, Y. Gotoh, Y. Oosawa, J. Akimoto, Y. Gotoh, Y. Osawa, J. Solid State Chemistry 1 (1997) 129.Google Scholar
  3. 3.
    J.P. Kartha, D.P. Tunstall, J.T.S. Irvine, J. Solid State Chemistry 152 (2000) 397.CrossRefGoogle Scholar
  4. 4.
    M.E. Arroyo de Dompablo, A. Varez, F. Garcia-Alvarado, J. Solid State Chemistry 153 (2000) 132.CrossRefGoogle Scholar
  5. 5.
    R. van de Krol, Thesis, 2000, Universal Press, Veeneddaal, Netherland.Google Scholar
  6. 6.
    S. Sodergren, H. Siegbahn, H. Rensmo, H. Lindstrom, A. Hagfeldt, S.E. Lindquist, J. Phys. Chem. B 101 (1997) 3087.Google Scholar
  7. 7.
    D.W. Murphy, R.J. Cava, S.M. Zahurak, A. Santoro, Solid State Ionics 9 (1983) 413.CrossRefGoogle Scholar
  8. 8.
    T. Ohzuku, A. Ueda, N. Yamamoto, J. Electrochem. Soc. 142 (1995) 1431.CrossRefGoogle Scholar
  9. 9.
    M. Nishijima, Y. Takeda, N. Imanishi, O. Yamamoto, J. Electrochem. Soc. 141 (1994) 2966.CrossRefGoogle Scholar
  10. 10.
    T. Shodai, S. Okada, S. Tobishima, J. Yamaki, Solid State Ionics 86 (1996) 785.CrossRefGoogle Scholar
  11. 11.
    S. Suzuki, T. Shodai, Solid State Ionics 116 (1999) 1.CrossRefGoogle Scholar
  12. 12.
    J.L.C. Rowsell, V. Pralong, L.F. Nazar, J. Am. Chem. Soc. 123 (2001) 8598.CrossRefGoogle Scholar
  13. 13.
    N. Pereira, L.C. Klein, G.G. Amatucci, J. Electrochem. Soc. A262 (2002) 149.Google Scholar
  14. 14.
    D. Souza, V. Pralong, A.J. Jacobson, L.F. Nazar, Science 296 (2002) 2012.CrossRefGoogle Scholar
  15. 15.
    V. Pralong, D.C. Souza, L.F. Nazar, Electrochem. Com. 4 (2002) 516.CrossRefGoogle Scholar
  16. 16.
    T. Nagaura, K. Tozawa, Prog. Battery and Solar Cells 9 (1990) 209.Google Scholar
  17. 17.
    C.F. Holmes, A.R. Landgrebe, The Electrochemical Society Proceeding 97 (1997) 18.Google Scholar
  18. 18.
    T. Ohzuku, A. Ueda, J. Electrochem. Soc. 144 (1997) 2780.CrossRefGoogle Scholar
  19. 19.
    P. Novack, K. Miller, K.S.V. Santhanam, O. Heas, Chem. Rev. 97 (1997) 207.CrossRefGoogle Scholar
  20. 20.
    P. Bicke, W.F. Chu, W. Weppner, Solid State Ionics 1997, 93.Google Scholar
  21. 21.
    M. Arakawa, J. Yamaki, J. Power Sources 54 (1995) 250.CrossRefGoogle Scholar
  22. 22.
    S.A. Safran, Solid State Physics 40 (1987) 183.CrossRefGoogle Scholar
  23. 23.
    S.E. Ulloa, G. Kirczenow, Comments Cond Mat. Phys. 12 (1986) 181.Google Scholar
  24. 24.
    J.R. Dahn, A.K. Sleigh, H. Shi, J.N. Reimer, Q. Zhong, B.M. Way,, Electrochim. Acta 38(1993)1179.CrossRefGoogle Scholar
  25. 25.
    F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann,.Advanced Inorganic Chemistry, John Wiley & Sons. Inc. NY 1999.Google Scholar
  26. 26.
    M.N. Richard, J.R. Dahn, J. Electrochem. Soc. 146 (1999) 2068.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2003, First softcover printing 2009

Authors and Affiliations

  • M. Nazri
    • 1
  • B. Yebka
    • 2
  • G.-A. Nazri
    • 2
  1. 1.Department of ChemistryUniversity of WindsorWindsorCanada
  2. 2.GM Research and Development CenterWarrenU.S.A.

Personalised recommendations