Advertisement

Synthesis of Battery Materials

  • M. S. Whittingham

Synthesis is critical not only to the generation of new materials for exploration of new structures and fundamental properties, but also for the formation of materials with the optimum electrochemical behavior for commercial devices. The technique used is quite often very different for the above two cases. The initial synthesis of a material should provide it in a pure enough state that its intrinsic behavior and properties can be determined; it should for example be possible to accurately determine whether its structure is cubic spinel, layered or some other form. There is presently much confusion in the literature because the synthesized material was insufficiently well-characterized. Once well characterized, the material needs to be synthesized in a form suitable to be used in a battery, for example it may be doped or coated to enhance the conductivity, its particle size and morphology will be optimized for maximum reactivity but minimum corrosivity and side-reactions.

Many battery materials are metastable phases, and therefore non-traditional synthesis methods must be devised to allow kinetics to over-ride thermodynamics. Hence, many soft chemistry techniques have come to the fore such as hydrothermal, ion-exchange, intercalation, etc. In addition, to optimize the formation of the desired material frequently the reactants are finely mixed prior to final reaction by for example sol-gel formation or co-precipitation as hydroxides.

Keywords

Particle Size Physical Chemistry Energy System Synthesis Method Electrochemical Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. H. Gaines, R. W. Francis, G. H. Newman, B. M. L. Rao, “Ambient Temperature Electric Vehicle Batteries Based on Lithium and Titanium Disulfide”, in 11th Intersociety Energy Conversion Conference (1976) 418. Stateline, Nevada.Google Scholar
  2. 2.
    L. Gaines, R. Cuenca, “Costs of Lithium-Ion Batteries for Vehicles”, in Argonne National Laboratory Report ANL/ESD-42. 2000, Argonne National Laboratory, p. 57.Google Scholar
  3. 3.
    A. H. Thompson, F. R. Gamble, C. R. Symon, Mater. Res. Bull. 10 (1975) 915.CrossRefGoogle Scholar
  4. 4.
    A. H. Thompson, Phys. Rev. Lett. 35 (1975) 1786.CrossRefGoogle Scholar
  5. 5.
    M. Danot, A. L. Blanc, J. Rouxel, Bull. Soc. Chim. France (1969) 2670.Google Scholar
  6. 6.
    J. Rouxel, M. Danot, J. Bichon, Bull. Soc. Chim. France (1971) 3930.Google Scholar
  7. 7.
    W. Rudorff, Chimia 19 (1965) 489.Google Scholar
  8. 8.
    M. Danot, J. Rouxel, Comptes Rendus Acad. Sc. Paris C276 (1973) 1283.Google Scholar
  9. 9.
    M. S. Whittingham, Prog. Solid State Chem. 12 (1978) 41.CrossRefGoogle Scholar
  10. 10.
    M. S. Whittingham, U. S. Patent 4040017 and U.K. Patent 1468244 (1973)Google Scholar
  11. 11.
    M. S. Whittingham, J. Chem. Soc. Chem. Comm. (1974) 328.Google Scholar
  12. 12.
    M. B. Dines, Mater. Res. Bull. 10 (1975) 287.CrossRefGoogle Scholar
  13. 13.
    M. S. Whittingham, M. B. Dines, J. Electrochem. Soc. 124 (1977) 1387.CrossRefGoogle Scholar
  14. 14.
    D. W. Murphy, F. J. DiSalvo, G. W. Hull, J. V. Waszczak, Inorg. Chem. 15 (1976) 17.CrossRefGoogle Scholar
  15. 15.
    R. Schollhorn, H. Meyer, Mater. Res. Bull. 9 (1974) 1237.CrossRefGoogle Scholar
  16. 16.
    G. V. SubbaRao, J. C. Tsang, Mater. Res. Bull. 9 (1974) 921.CrossRefGoogle Scholar
  17. 17.
    M. S. Whittingham, U.S. Patent 4009052 and U.K. Patent 1468416 (1973)Google Scholar
  18. 18.
    D. W. Murphy, J. N. Carides, F. J. DiSalvo, C. Cros, J. V. Waszczak, Mat. Res. Bull 12 (1977) 825.CrossRefGoogle Scholar
  19. 19.
    D. W. Murphy, P. A. Christian, Science 205 (1979) 651.CrossRefGoogle Scholar
  20. 20.
    R. Schollhorn, A. Payer, Angew. Chem. Int. Ed. 24 (1985) 67.CrossRefGoogle Scholar
  21. 21.
    S. Sinha, D. W. Murphy, Solid State Ionics 20 (1986) 81.CrossRefGoogle Scholar
  22. 22.
    J. B. Goodenough, A. Manthiram, B. Wnetrzewski, J. Power Sources 43–44 (1993) 269.CrossRefGoogle Scholar
  23. 23.
    K. Mitzushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, Mat. Res. Bull. 15 (1980) 783.CrossRefGoogle Scholar
  24. 24.
    K. Ozawa, Solid State Ionics 69 (1994) 212.CrossRefGoogle Scholar
  25. 25.
    G. G. Amatucci, J. M. Tarascon, L. C. Klein, J Electrochem Soc. 143 (1996) 1114.CrossRefGoogle Scholar
  26. 26.
    M. S. Whittingham, Mater. Res. Bull. 13 (1978) 959.CrossRefGoogle Scholar
  27. 27.
    J. R. Dahn, U. v. Sacken, C. A. Michal, Solid State Ionics 44 (1990) 87.CrossRefGoogle Scholar
  28. 28.
    C. S. Johnson, J.-S. Kim, A. J. Kropf, A. J. Kahaian, J. T. Vaughey, M. M. Thackeray, Electrochem. Commun. 4 (2002) 492.CrossRefGoogle Scholar
  29. 29.
    M. A. Py, R. R. Haering, Can. J. Phys. 61 (1983) 76.Google Scholar
  30. 30.
    R. R. Haering, J. A. R. Stiles, K. Brandt, U. S. Patent 4,224,390 (1980)Google Scholar
  31. 31.
    J. N. Reimers, J. R. Dahn, Phys. Rev. B 46 (1992) 3236.CrossRefGoogle Scholar
  32. 32.
    E. Rossen, J. N. Reimers, J. R. Dahn, Solid State Ionics 62 (1993) 53.CrossRefGoogle Scholar
  33. 33.
    R. J. Gummow, M. M. Thackeray, W. I. F. David, S. Hull, Mater. Res. Bull. 27 (1992) 327.CrossRefGoogle Scholar
  34. 34.
    R. J. Gummow, M. M. Thackeray, J. Electrochem. Soc. 140 (1993) 3365.CrossRefGoogle Scholar
  35. 35.
    G. G. Amatucci, J. M. Tarascon, D. Larcher, L. C. Klein, Solid State Ionics 84 (1996) 169.CrossRefGoogle Scholar
  36. 36.
    A. Burukhin, O. Brylev, P. Hany, B. R. Churagulov, Solid State Ionics 151 (2002) 259.CrossRefGoogle Scholar
  37. 37.
    M. G. S. R. Thomas, W. I. F. David, J. B. Goodenough, Mater. Res. Bull. 20 (1985) 1137.CrossRefGoogle Scholar
  38. 38.
    R. Chen, M. S. Whittingham, J. Electrochem. Soc. 144 (1997) L64.CrossRefGoogle Scholar
  39. 39.
    S. Mudhavi, G. V. SubbaRao, B. V. R. Chowdari, S. F. Y. Li, J. Power Sources 93 (2001) 156.CrossRefGoogle Scholar
  40. 40.
    S. Mudhavi, G. V. SubbaRao, B. V. R. Chowdari, S. F. Y. Li, Solid State Ionics 152 (2002) 199.CrossRefGoogle Scholar
  41. 41.
    J. Liu, K. Xu, T. R. Jow, K. Amine, Electrochemical Society Fall Meeting, Salt Lake City (2002)Google Scholar
  42. 42.
    I. Saadoune, C. Delmas, J. Materials Chemistry 6 (1996) 193.CrossRefGoogle Scholar
  43. 43.
    C. Delmas, I. Saadonne, Solid State Ionics 53–56 (1992) 370.CrossRefGoogle Scholar
  44. 44.
    I. Yanase, T. Ohtaki, M. Watanabe, Solid State Ionics 151 (2002) 189.CrossRefGoogle Scholar
  45. 45.
    M. E. Spahr, P. Novák, B. Schnyder, O. Haas, R. Nesper, J. Electrochem. Soc. 145 (1998) 1113.CrossRefGoogle Scholar
  46. 46.
    J.-C. Grenier, M. Pouchard, A. Wettiaux, Current Opinion in Solid State & Materials Science 1 (1996) 233.CrossRefGoogle Scholar
  47. 47.
    T. A. Chirayil, P. Y. Zavalij, M. S. Whittingham, Chem. Mater. 10 (1998) 2629.CrossRefGoogle Scholar
  48. 48.
    J. Guo, P. Zavalij, M. S. Whittingham, Eur. J. Solid State Chem 31 (1994) 833.Google Scholar
  49. 49.
    J.-D. Guo, P. Zavalij, M. S. Whittingham, J. Solid State Chem 117 (1995) 323.CrossRefGoogle Scholar
  50. 50.
    M. S. Whittingham, Current Opinion in Solid State &Materials Science, 1 (1996) 227.CrossRefGoogle Scholar
  51. 51.
    M. S. Whittingham, J. Guo, R. Chen, T. Chirayil, G. Janauer, P. Zavalij, Solid State Ionics 75 (1995) 257.CrossRefGoogle Scholar
  52. 52.
    J. Guo, Y. J. Li, M. S. Whittingham, J. Power Sources 54 (1995) 461.CrossRefGoogle Scholar
  53. 53.
    M. E. Spahr, P. Stoschitzki-Bitterli, R. Nesper, M. Müller, F. Krumeich, H. U. Nissen, Angew. Chem. Int. Ed. Engl. 37 (1998) 1263.CrossRefGoogle Scholar
  54. 54.
    M. E. Spahr, P. Stoschitzki-Bitterli, R. Nesper, O. Haas, P. Novak, J. Electrochem. Soc. 146 (1999) 2780.CrossRefGoogle Scholar
  55. 55.
    K. Edström, T. Gustafsson, S. Nordliner, Electrochem. Solid-State Lett. 4 (2001) A129.CrossRefGoogle Scholar
  56. 56.
    A. Dobley, K. Ngala, S. Yang, P. Y. Zavalij, M. S. Whittingham, Chem. Mater. 13 (2001) 4382.CrossRefGoogle Scholar
  57. 57.
    P. Y. Zavalij, M. S. Whittingham, Acta Cryst. B55 (1999) 627.Google Scholar
  58. 58.
    R. Chen, P. Zavalij, M. S. Whittingham, Chem Mater 8 (1996) 1275.CrossRefGoogle Scholar
  59. 59.
    R. Chen, T. Chirayil, M. S. Whittingham, Proceedings of the 10th International Symposium on Solid State Ionics, Singapore, December 1995. Solid State Ionics 86–88 (1996) 1.CrossRefGoogle Scholar
  60. 60.
    P. Sharma, G. Moore, F. Zhang, P. Y. Zavalij, M. S. Whittingham, Electrochem. Solid-State Lett. 2 (1999) 494.CrossRefGoogle Scholar
  61. 61.
    F. Zhang, M. S. Whittingham, Electrochem. Solid-State Letters 3 (2000) 309.CrossRefGoogle Scholar
  62. 62.
    Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, Chem. Mater. 7 (1995) 1226.CrossRefGoogle Scholar
  63. 63.
    S. Ching, J. A. Landrigan, M. L. Jorgenson, N. Duan, S. L. Suib, C.-L. O'Young, Chem. Mater. 7 (1995) 1604.CrossRefGoogle Scholar
  64. 64.
    S. Bach, M. Henry, N. Baffler, J. Livage, J. Solid State Chem. 88 (1990) 325.CrossRefGoogle Scholar
  65. 65.
    S. Franger, S. Bach, J. P. Pereira-Ramos, N. Baffler, J. Electrochem. Soc. 147 (2000) 3226.CrossRefGoogle Scholar
  66. 66.
    F. Leroux, D. Guyomard, Y. Piffard, Solid State Ionics 80 (1995) 299.CrossRefGoogle Scholar
  67. 67.
    M. Tsuji, S. Komarneni, Y. Tamaura, M. Abe, Mat. Res. Bull. 27 (1992) 741.CrossRefGoogle Scholar
  68. 68.
    Y. Omomo, T. Sasaki, M. Watanabe, Solid State Ionics 151 (2002) 243.CrossRefGoogle Scholar
  69. 69.
    C. Delmas, C. Fouassier, Z. Anorg. Allg. Chem. 420 (1976) 184.CrossRefGoogle Scholar
  70. 70.
    A. Mendiboure, C. Delmas, P. Hagenmuller, J. Solid State Chemistry 57 (1985) 323.CrossRefGoogle Scholar
  71. 71.
    C. Delmas, C. Fouassier, P. Hagenmuller, J. Solid State Chemistry 13 (1975) 165.CrossRefGoogle Scholar
  72. 72.
    C. Delmas, J.-J. Braconnier, C. Fouassier, P. Hagenmuller, Solid State Ionics 3/4 (1981) 165.CrossRefGoogle Scholar
  73. 73.
    C. Delmas, M. Devalette, C. Fouassier, P. Hagenmuller, Mat. Res. Bull. 10 (1975) 393.CrossRefGoogle Scholar
  74. 74.
    Y. Y. Yao, J. T. Kummer, J. Inorg. Nucl. Chem. 29 (1967) 2453.CrossRefGoogle Scholar
  75. 75.
    M. S. Whittingham, R. A. Huggins, J. Electrochem. Soc. 118 (1971) 1.CrossRefGoogle Scholar
  76. 76.
    M. S. Whittingham, R. A. Huggins, NBS Special Publications 364 (1972) 139.Google Scholar
  77. 77.
    C. Delmas, F. Capitaine, 8th IMLB 8 (1996) 470.Google Scholar
  78. 78.
    F. Capitaine, P. Gravereau, C. Delmas, Solid State Ionics 89 (1996) 197.CrossRefGoogle Scholar
  79. 79.
    A. R. Armstrong, P. G. Bruce, Nature 381 (1996) 499.CrossRefGoogle Scholar
  80. 80.
    A. D. Robertson, A. R. Armstrong, A. J. Fowles, P. G. Bruce, J. Mater. Chem. 11 (2001) 113.CrossRefGoogle Scholar
  81. 81.
    A. R. Armstrong, R. Gitzendanner, A. D. Robertson, P. G. Bruce, Chem. Commun. (1998) 1833.Google Scholar
  82. 82.
    M. M. Doeff, M. Y. Peng, Y. Ma, L. C. DeJonghe, J. Electrochem. Soc. 141 (1994) L145.CrossRefGoogle Scholar
  83. 83.
    M. M. Doeff, T. J. Richardson, L. Kepley, J. Electrochem. Soc. 143 (1996) 2507.CrossRefGoogle Scholar
  84. 84.
    M. M. Doeff, M. Y. Peng, Y. Ma, S. J. Visco, L. C. DeJonghe, US Patent 5,558,961 (1996)Google Scholar
  85. 85.
    M. M. Doeff, K.-T. Hwang, T. J. Richardson, L. C. DeJongue, Electrochem. Soc. Proc. 99–2 (1999) 184.Google Scholar
  86. 86.
    W. G. Mumme, Acta Cryst. B24 (1968) 1114.Google Scholar
  87. 87.
    M. M. Doeff, T. J. Richardson, K. T. Hwang, A. Anapolsky, Electrochem. Soc. Proc. 99–24 (2000) 48.Google Scholar
  88. 88.
    M. M. Doeff, T. J. Richardson, K.-T. Hwang, A. Anapolsky, ITE Battery Lett. 2 (2001) B.Google Scholar
  89. 89.
    A. R. Armstrong, H. Huang, R. A. Jennings, P. G. Bruce, J. Mater. Chem. 8 (1998) 255.CrossRefGoogle Scholar
  90. 90.
    M. Tabuchi, C. Masquelier, T. Takeuchi, K. Ado, I. Matsubara, T. Shirane, R. Kanno, S. Nasu, H. Sakaebe, H. Okuyama, O. Nakamura, Abstracts of the 10th Int. Conf. on Solid State Ionics, Singapore, December 3–(1995) 197.Google Scholar
  91. 91.
    B. Fuchs, S. Kemmlersack, Solid State Ionics 68 (1994) 279.CrossRefGoogle Scholar
  92. 92.
    M. Tabuchi, K. Ado, H. Sakaebe, C. Masquelier, H. Kageyama, O. Nakamura, Solid State Ionics 79 (1995) 220.CrossRefGoogle Scholar
  93. 93.
    T. Shirane, R. Kanno, Y. Kawamoto, Y. Takeda, M. Takano, T. Kamiyama, F. Izumi, Solid State Ionics 79 (1995) 227.CrossRefGoogle Scholar
  94. 94.
    F. Zhang, K. Ngala, M. S. Whittingham, Electrochem. Commun. 2 (2000) 445.CrossRefGoogle Scholar
  95. 95.
    P. Y. Zavalij, F. Zhang, M. S. Whittingham, Acta Cryst. C53 (1997) 1738.Google Scholar
  96. 96.
    F. Leroux, A. L. G. L. Salle, D. Guyomard, Y. Piffard, J. Materials Chem. 11 (2001) 652.CrossRefGoogle Scholar
  97. 97.
    M. S. Whittingham, 1996 USDOE BATT Annual Report (1997)Google Scholar
  98. 98.
    R. Chen and M. S. Whittingham, Proc. Annual Automotive Technology Development Customers Coordination Meeting, DOE-OTT (Dearborn, MI, Oct. 27–30, 1997), III (1997) 301.Google Scholar
  99. 99.
    E. Rossen, C. D. W. Jones, J. R. Dahn, Solid State Ionics 57 (1992) 311.CrossRefGoogle Scholar
  100. 100.
    T. Ohzuku, Y. Makimura, Chem. Lett. (2001) 642.Google Scholar
  101. 101.
    Z. Lu, D. D. MacNeil, J. R. Dahn, Electrochem. Solid-State Lett. 4 (2001) A200.CrossRefGoogle Scholar
  102. 102.
    J. K. Ngala, N. A. Chernova, M. Ma, P. Y. Zavalij, M. S. Whittingham, Chem. Mater. 15 (2003) in press.Google Scholar
  103. 103.
    D. Guyomard, J. M. Tarascon, J. Electrochem. Soc. 139 (1992) 937.CrossRefGoogle Scholar
  104. 104.
    J. M. Tarascon, W. R. McKinnon, F. Coowar, T. N. Bowmer, G. Amatucci, D. Guyomard, J. Electrochem. Soc. 141 (1994) 1421.CrossRefGoogle Scholar
  105. 105.
    C. C. Torardi, C. R. Miao, M. E. Lewittes, Z. Li, Electrochemical Society Proceedings, 2000–21 (2000) 68.Google Scholar
  106. 106.
    C. C. Torardi, C. R. Miao, M. E. Lewittes, Z. Li, J. Solid State Chem. 163 (2002) 93.CrossRefGoogle Scholar
  107. 107.
    A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc. 144 (1997) 1188.CrossRefGoogle Scholar
  108. 108.
    A. S. Andersson, B. Kalska, L. Häggström, J. O. Thomas, Solid State Ionics 130 (2000) 41.CrossRefGoogle Scholar
  109. 109.
    M. B. Armand, Personal Communication (2001)Google Scholar
  110. 110.
    S. Yang, P. Y. Zavalij, M. S. Whittingham, Electrochem. Commun. 3 (2001) 505.CrossRefGoogle Scholar
  111. 111.
    S. Yang, Y. Song, P. Y. Zavalij, M. S. Whittingham, Electrochem. Commun. 4 (2002) 239.Google Scholar
  112. 112.
    M. Higuchi, K. Katayama, Y. Azuma, M. Yukawa, M. Suhara, J. Power Sources (2003) in press.Google Scholar
  113. 113.
    N. Ravet, J. B. Goodenough, S. Besner, M. Simoneau, P. Hovington, M. Armand, Electrochem. Soc. Abstracts, 99–2 (1999) 127.Google Scholar
  114. 114.
    N. Ravet, S. Besner, M. Simoneau, A. Vallée, M. Armand, J.-F. Magnan, European Patent 1049182A2 (2000).Google Scholar
  115. 115.
    H. Huang, S.-C. Yin, L. F. Nazar, Electrochem. Solid-State Lett. 4 (2001) A170.CrossRefGoogle Scholar
  116. 116.
    C. Masquelier, C. Wurm, M. Morcrette, J. Gaubicher, Int. Meeting on Solid State Ionics, Cairns, Australia, July 9–13, paper A-IN-06, (2001)Google Scholar
  117. 117.
    R. Dominko, M. Gaberscek, J. Drofenik, M. Bele, S. Pejovnik, Electrochem. Solid-State Lett. 4 (2001) A187.CrossRefGoogle Scholar
  118. 118.
    S. Yang, Y. Song, K. Ngala, P. Y. Zavalij, M. S. Whittingham, J. Power Sources (2003) in press.Google Scholar
  119. 119.
    Z. Chen, J. R. Dahn, J. Electrochem. Soc. 149 (2002) A1184.CrossRefGoogle Scholar
  120. 120.
    S.-Y. Chung, J. T. Bloking, Y.-M. Chiang, Nature Materials 1 (2002) 123.CrossRefGoogle Scholar
  121. 121.
    A. N. Dey, J. Electrochem. Soc. 118 (1971) 1547.CrossRefGoogle Scholar
  122. 122.
    B. M. L. Rao, R. W. Francis, H. A. Christopher, J. Electrochem. Soc. 124 (1977) 1490.CrossRefGoogle Scholar
  123. 123.
    J. Wang, I. D. Raistrick, R. A. Huggins, J. Electrochem. Soc. 133 (1986) 457.CrossRefGoogle Scholar
  124. 124.
    A. Hérold, Bull. Soc. Chim. France (1955) 999.Google Scholar
  125. 125.
    J. O. Besenhard, H. P. Fritz, Electroanal. Chem. Interfac. Electrochem. 53 (1974) 329.CrossRefGoogle Scholar
  126. 126.
    J. O. Besenhard, Carbon 14 (1976) 111.CrossRefGoogle Scholar
  127. 127.
    P. Ge, M. Fouletier, Solid State Ionics 28–30 (1988) 1172.CrossRefGoogle Scholar
  128. 128.
    M. S. Whittingham, G. H. Newman, US Patent 4,086,403 (1976).Google Scholar
  129. 129.
    M. S. Whittingham, G. H. Newman, J. Electrochem. Soc. 128 (1981) 706.CrossRefGoogle Scholar
  130. 130.
    S. Basu, US Patent 4,423,125 (1982).Google Scholar
  131. 131.
    M. Mohri, N. Yanagisawa, Y. Tajima, H. Tanaka, T. Mitate, S. Nakajima, M. Yoshida, Y. Yoshimoto, T. Suzuki, H. Wada, J. Power Sources 26 (1989) 545.CrossRefGoogle Scholar
  132. 132.
    Y. Nishi, in: M. Wakihara and O. Yamamoto (Eds.), Lithium Ion Batteries, Kodansha, Tokyo, 1998, p. 181.CrossRefGoogle Scholar
  133. 133.
    R. Fong, U. v. Sacken, J. R. Dahn, J. Electrochem. Soc. 137 (1990) 2009.CrossRefGoogle Scholar
  134. 134.
    V. V. Boldyrev, Experimental Methods in Mechanochemistry of Inorganic Solids, 1986, Novosibirsk. Nauka (in Russian).Google Scholar
  135. 135.
    V. V. Boldyrev, Mechanochemistry and Mechanical Activation of Solids, 2004, World Scientific.Google Scholar
  136. 136.
    M. Senna, Solid State Chemistry 63–65 3.Google Scholar
  137. 137.
    E. Gutman, Mechanochemistry of Materials, 1997, Cambridge International Science Pub.Google Scholar
  138. 138.
    N. V. Kosova, E. T. Devyatkina, Electrochem. Society Abstracts, 2003–1 (2003) 1009.Google Scholar
  139. 139.
    K. D. Kepler, J. T. Vaughey, M. M. Thackeray, Electrochem. Solid-State Lett. 2 (1999) 307.CrossRefGoogle Scholar
  140. 140.
    J. T. Vaughey, K. D. Kepler, C. S. Johnson, T. Sarakonsri, R. Benedek, J. O'Hara, S. Hackney, M. M. Thackeray, Electrochem. Soc. Proc. 99–2 (1999) 280.Google Scholar
  141. 141.
    M. M. Thackeray, J. T. Vaughey, A. J. Kahaian, K. D. Kepler, R. Benedek, Electrochem. Comm. 1 (1999) 111.CrossRefGoogle Scholar
  142. 142.
    N. Tamura, R. Ohshita, M. Fujimoto, S. Fujitani, M. Kamino, I. Yonezu, J. Power Sources 107 (2002) 48.CrossRefGoogle Scholar
  143. 143.
    S. Yang, P. Y. Zavalij, M. S. Whittingham, Mater. Res. Soc. Proc. 756 (2003) 295.Google Scholar
  144. 144.
    J. T. Vaughey, J. O'Hara, M. M. Thackeray, Electrochem. Solid-State Lett. 3 (2000) 13.CrossRefGoogle Scholar
  145. 145.
    O. Mao, R. L. Turner, I. A. Courtney, B. D. Fredericksen, M. I. Buckett, L. J. Krause, J. R. Dahn, Electrochem. Solid-State Lett. 2 (1999) 3.CrossRefGoogle Scholar
  146. 146.
    O. Mao, J. R. Dahn, J. Electrochem. Soc. 146 (1999) 414.CrossRefGoogle Scholar
  147. 147.
    O. Mao, R. A. Dunlap, I. A. Courtney, J. R. Dahn, J. Electrochem. Soc. 145 (1998) 4195.CrossRefGoogle Scholar
  148. 148.
    M. Winter, J. O. Besenhard, Electrochim. Acta 45 (1999) 31.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2003, First softcover printing 2009

Authors and Affiliations

  • M. S. Whittingham
    • 1
  1. 1.Chemistry and Materials Science State University of New York at BinghamtonBinghamtonU.S.A.

Personalised recommendations