Advertisement

Glass and Ceramic Electrolytes for Lithium and Lithium-Ion Batteries

  • N. J. Dudney

In recent years there have been important advances in the stability, safety, and performance of lithium and lithium-ion batteries. Many of the electrolyte materials being examined are based on organic liquids or polymers, although solid inorganic electrolytes still have an important role for a variety of applications. There are numerous reports of new compositions, advanced synthesis routes, and novel cell architecture for the glass and ceramic electrolytes.

For any rechargeable lithium battery, the electrolyte material must permit the repeated and rapid transfer of Li+ ions between the anode and cathode over the expected range of operating conditions (voltage, temperature, and current), without significant deterioration. Additionally, the ideal electrolyte material would be an electronic insulator, ultra-thin, lightweight, free of hazards and inexpensive. The inorganic solid electrolytes offer both advantages and disadvantages over liquid and organic polymer electrolytes. For the required rapid transport of Li+ across the electrolyte, the product of the resistivity and electrolyte thickness must be minimized. Typical room temperature conductivities are 10−1 S/cm for liquids, 10−2 S/cm for superionic conductors such as β-alumina, 10−3 to 10−6 S/cm for various gel and solvent-free (dry) polymers, and 10−4 to 10−8 S/cm for typical glass and ceramic solid electrolytes. If formed as a very thin film of less than about 1 μm, even a rather resistive material may compete favorably when compared to a much thicker cast polymer or liquid-filled porous separator membrane. An ultra-thin electrolyte also provides a considerable savings in terms of volume and mass for the battery, if not offset by the need for a thick inactive support material. It comes as a surprise to many that 1–10 μm thick glass and ceramic sheets are quite flexible.

Keywords

Polymer Electrolyte Solid Electrolyte Electrolyte Material Rechargeable Lithium Battery Room Temperature Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.-H. Lee, K. H. Joo, J. H. Kim, J. H. Woo, H.-J. Sohn, T. Kang, Y. Park, J. Y. Oh, Solid State Ionics 149 (2002)59.CrossRefGoogle Scholar
  2. 2.
    K. J. Rao, M. Ganguli, “Lithium Ion Conducting Glasses”, inHandbook of Solid State Batteries and Capacitors, M. Z. A. Munshi, Ed., Singapore, World Scientific, 1995.Google Scholar
  3. 3.
    S. D. Jones, J. R. Akridge, “Lithium Glassy Electrolyte Batteries”, inHandbook of Solid State Batteries and Capacitors, M. Z. A. Munshi, Ed. Singapore, World Scientific, 1995.Google Scholar
  4. 4.
    A. D. Robertson, A. R. West, A. G. Ritchie, Solid State Ionics. 104 (1997)1.CrossRefGoogle Scholar
  5. 5.
    K. Funke, .Prog. Solid State Chem. 22 (1993)111.CrossRefGoogle Scholar
  6. 6.
    N. Imanaka, T. Shimizu, G. Adachi, Solid State Ionic. 62 (1993)167.CrossRefGoogle Scholar
  7. 7.
    J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, J. D. Robertson, J. Power Sources 43–44 (1993)103.CrossRefGoogle Scholar
  8. 8.
    X. Yu, J. B. Bates, G. E. Jellison Jr., R. X. Hart, J. Electrochem. Soc. 144 (1997)524.CrossRefGoogle Scholar
  9. 9.
    J. B. Bates, N. J. Dudney, B. J. Neudecker, A. Ueda, C. D. Evans, Solid State Ionics 135 (2000)33.CrossRefGoogle Scholar
  10. 10.
    F. Vereda, R. B. Goldner, T. E. Haas, P. Zerigian, .Electrochem. Solid-State Lett. 5 (2002)A239.CrossRefGoogle Scholar
  11. 11.
    Y.-S. Park, S.-H. Lee, B.-I. Lee, S-K. Joo, Electrochem. Solid- State Lett. 2 (1999)58.CrossRefGoogle Scholar
  12. 12.
    E. J. Jeon, Y. W. Shin, S. C. Nam, W. I. Cho, Y. S. Yoon, J. Electrochem. Soc. 148 (2001)A318.CrossRefGoogle Scholar
  13. 13.
    C. Lee, S. A. Akbar, C. O. Park, Sensor Actual B-Chem.. 80 (2001)234.CrossRefGoogle Scholar
  14. 14.
    Y. S. Yoon, W. I. Cho, J. H. Lim, D. J. Choi, J. Power Sources 101 (2001)126.CrossRefGoogle Scholar
  15. 15.
    N. J. Dudney, B. J. Neudecker, Curr. Opin. Solid State Mater. Sci. 4 (1999)479.CrossRefGoogle Scholar
  16. 16.
    F. Vereda, N. Clay, A. Gerouki, R. B. Goldner, T. Haas, P. Zerigian, J. Power Sources 89 (2000)201.CrossRefGoogle Scholar
  17. 17.
    S. Zhao, Z. Fu, Q. Qin, Thin Solid Films 415 (2002)108.CrossRefGoogle Scholar
  18. 18.
    C. H. Choi, W. I. Cho, B. W. Cho, H. S. Kim, Y. S. Yoon, Y. S. Tak, Electrochem. Solid-State Lett. 5 (2002)A14.CrossRefGoogle Scholar
  19. 19.
    N.-S. Roh, S.-D. Lee, H.-S. Kwon, Scripta Mater. 42 (2000)43.Google Scholar
  20. 20.
    B. Wang, B. S. Kwak, B. C. Sales, J. B. Bates, J. Non-Cryst. Solids 183 (1995)297.CrossRefGoogle Scholar
  21. N. J. Dudney, in preparation.Google Scholar
  22. 22.
    A. Le Sauze, E. Gueguen, R. Marchand, J. Non-Cryst. Solids 217 (1997)83.CrossRefGoogle Scholar
  23. 23.
    P. Birke, W. F. Chu, W. Weppner, Solid State Ionics. 93 (1996)1.CrossRefGoogle Scholar
  24. 24.
    J. H. Kennedy, Z. Zhang, J. Electrochem. Soc. 136 (1989)2441.CrossRefGoogle Scholar
  25. 25.
    Z. Zhang, J. H. Kennedy, .Solid State Ionics 38 (1990)217.CrossRefGoogle Scholar
  26. 26.
    H. Morimoto, H. Yamashita, M. Tatsumisago, T. Minami, J. Am. Ceram. Soc. 82 (1999)1352.Google Scholar
  27. 27.
    A. Hayashi, S. Hama, H. Morimoto, M. Tatsumisago, T. Minami, J. Amer. Ceram. Soc. 84 (2001)477.CrossRefGoogle Scholar
  28. 28.
    T. Minami, A. Hayashi, M. Tatsumisago, Solid State Ionics 136–137 (2000)1015.CrossRefGoogle Scholar
  29. 29.
    R. F. Bartholomew, D. M. Young, A. J. G. Ellison, J. Non-Cryst. Sol. 257 (1999)242.CrossRefGoogle Scholar
  30. 30.
    A. Hayashi, H.Yamashita, M. Tatsumisago, T. Minami, Solid State Ionics 148 (2002)381.CrossRefGoogle Scholar
  31. 31.
    R. Komiya, A. Hayashi, H. Morimoto, M. Tatsumisago, T. Minami, Solid State Ionics 140 (2001)83.CrossRefGoogle Scholar
  32. 32.
    K. Takada, N. Aotani, K. Iwamoto, S. Kondo, Solid State Ionics 79 (1995)284.CrossRefGoogle Scholar
  33. 33.
    K. Takada, T. Inada, A. Kajiyama, M. Kouguchi, S. Kondo, M. Watanabe, J. Power Sources 97–98 (2001)762.CrossRefGoogle Scholar
  34. 34.
    R. Sakamoto, M. Tatsumisago, T. Minami, J. Phys. Chem. B 103 (1999)4029.CrossRefGoogle Scholar
  35. 35.
    K. Iio, A.Hayashi, H. Morimoto, M. Tatsumisago, T. Minami, Chem. Mater. 14 (2002)2444.CrossRefGoogle Scholar
  36. 36.
    P. Vinatier, M. Ménétrier, A. Levasseur, Solid State Ionics 116 (1999)35.CrossRefGoogle Scholar
  37. 37.
    J. Ibarra, A.Vάrez, C. León, J. Santamaría, M. Torres-Martínez, J. Sanz, Solid State Ionics 134 (2000)219.CrossRefGoogle Scholar
  38. 38.
    K. Mizumoto, S. Hayashi, Solid State Ionics 127 (2000)241.CrossRefGoogle Scholar
  39. 39.
    Y. Inaguma, L.Q. Chen, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, M. Wakihara, Solid State Commun. 86 (1993)689.CrossRefGoogle Scholar
  40. 40.
    S. García-Martín, J.M. Rojo, H. Tsukamoto, E. Morán, M.A. Alario-Franco, Solid State Ionics 116 (1999)11.CrossRefGoogle Scholar
  41. 41.
    O. Bohnke, C. Bohnke, J.L. Fourquet, Solid State Ionics 91 (1996)21.CrossRefGoogle Scholar
  42. 42.
    H. Watanabe, J. Kuwano, J. Power Sources 68 (1997)421.CrossRefGoogle Scholar
  43. 43.
    H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G. Adachi, J. Electrochem. Soc. 136 (1989)590.CrossRefGoogle Scholar
  44. 44.
    A.K. Ivanov-Schitz, A.V. Nistuk, L.N. Demianets, N.G. Chaban, Solid State Ionics 144 (2001)133.CrossRefGoogle Scholar
  45. 45.
    V. Thangadurai, A.K. Shukla, J. Gopalakrishnan, J. Mater. Chem. 9 (1999)739.CrossRefGoogle Scholar
  46. 46.
    H. Yamamoto, M. Tabuchi, T. Takeuchi, H. Kageyama, O. Nakamura, J. Power Sources 68 (1997)397.CrossRefGoogle Scholar
  47. 47.
    P. Birke, F. Salam, S. Döring, W. Weppner, Solid State Ionics 118 (1999)149.CrossRefGoogle Scholar
  48. 48.
    R. Sobiestianskas, A. Dindune, Z. Kanepe, J. Ronis, A. Kezionis, E. Kazakevicius, A. Orluikas, Mat. Sci. Eng. B-Solid B76 (2000)184.CrossRefGoogle Scholar
  49. 49.
    T. Suzuki, K. Yoshida, D. Uematsu, T. Kodama, K. Toda, Z.-G. Ye, M. Sato, Solid State Ionics 104 (1997)27.CrossRefGoogle Scholar
  50. 50.
    J. Fu, Solid State Ionics 96 (1997)195.CrossRefGoogle Scholar
  51. 51.
    B. V. R. Chowdari, G. V. S. Rao, G. Y. H. Lee, Solid State Ionics 136–137 (2000)1067.CrossRefGoogle Scholar
  52. 52.
    K. Takada, M. Tansho, I. Yanase, T. Inada, A. Kajiyama, M. Kouguchi, S. Kondo, M. Watanabe, Solid State Ionics 139 (2001)241.CrossRefGoogle Scholar
  53. 53.
    J. Yamaki, H. Ohtsuka, T. Shodai, Solid State Ionics 86–88 (1996)1279.CrossRefGoogle Scholar
  54. 54.
    R. Kanno, T. Hata, Y. Kawamoto, M. Irie, Solid State Ionics 130 (2000)97.CrossRefGoogle Scholar
  55. 55.
    R. Kanno, M. Murayama, J. Electrochem. Soc. 148 (2001)A742.CrossRefGoogle Scholar
  56. 56.
    Y. Jia, J. Yang, Solid State Ionics 96 (1997)113.CrossRefGoogle Scholar
  57. 57.
    J. Yang, Y. Jia, Z. Yao, Solid State Ionics 96 (1997)215.CrossRefGoogle Scholar
  58. 58.
    Y. Tomita, H. Ohki, K. Yamada, T. Okuda, Z Naturforsch. A 55 (2000)117.Google Scholar
  59. 59.
    G.A. Nazri, R.A. Conell, C. julien, Solid State Ionics 86–88 (1996)99.CrossRefGoogle Scholar
  60. 60.
    X. Wei, D.F. Shriver, Solid State Ionics 133 (2000)233.CrossRefGoogle Scholar
  61. 61.
    B.J. Neudecker, W. Weppner, J. Electrochem. Soc. 143 (1996)2198.CrossRefGoogle Scholar
  62. 62.
    E.M. Kelder, M. J. G. Jak, F. de Lange, J. Schoonman, Solid State Ionics 85 (1996)285.CrossRefGoogle Scholar
  63. 63.
    M. J. G. Jak, F. G. B. Ooms, E.M. Kelder, W.J. Legerstee, J. Schoonman, A. Weisenburger, J. Power Sources 80 (1999)83.CrossRefGoogle Scholar
  64. 64.
    K. Funke, C. Cramer, B. Rolin, Glastech. Ber. Glass Sci. Technol. 73 (2000)244.Google Scholar
  65. 65.
    J. Swenson, C. Karlsson, L. Börjesson, R.K. Heenan, Phys. Rev. B 64 (2001)134.Google Scholar
  66. 66.
    P. Vinatier, M. Ménétrier, A. Levasseur, Solid State Ionics 136 (1999)35.CrossRefGoogle Scholar
  67. 67.
    K. Mizumoto, S. Hayashi, Solid State Ionics 127 (2000)241.CrossRefGoogle Scholar
  68. 68.
    A. Rivera, A. Varez, J. Sanz, J. Santamaria, C. Leon, J. Alloys Compds. 323–324 (2001)545.CrossRefGoogle Scholar
  69. 69.
    J Deppe, R.F. Wallis, I. Nachev, M. Balkanski, J. Phys. Chem. Solids 55 (1994)759.CrossRefGoogle Scholar
  70. 70.
    S.H. Garofalini, P. Shadwell, J. Power Sources 89 (2000)190.CrossRefGoogle Scholar
  71. 71.
    N.J. Dudney, J. Power Sources 89 (2000)176.CrossRefGoogle Scholar
  72. 72.
    E.S. Nimon, M. Sukeshini, S.J. Visco, Presentation No. 221, International Meeting on Lithium Batteries, June 23–28, 2002, Monterey, California (to be published within J. Power Sources).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2003, First softcover printing 2009

Authors and Affiliations

  • N. J. Dudney
    • 1
  1. 1.Solid State DivisionOak Ridge National LaboratoryOak RidgeU.S.A.

Personalised recommendations