Advertisement

The Role of Electronic Properties in the Electrochemical Behavior of Intercalation Compounds From a First Principles Vantage Point

  • A. Van der Ven
  • G. Ceder

Lithium transition metal oxides are remarkable intercalation compounds, exhibiting an array of intriguing electronic and phase transformation phenomena. Their ability to undergo large variations in lithium concentration, often without suffering irreversible changes, makes these materials ideal electrodes for rechargeable lithium batteries. Lithium transition metal oxides consist of a metal oxide host with a crystal structure in which lithium ions occupy a relatively open network of interstitial sites. While some lithium transition metal oxides can serve as an anode in rechargeable lithium batteries, most are more suited for the role of cathode as they typically exhibit a high voltage with respect to a metallic lithium anode, the ideal theoretical reference electrode. In a rechargeable lithium battery, lithium ions are shuttled between an anode and a cathode, whereby lithium ions are removed from and inserted into the electrodes. During deintercalation of a lithium transition metal oxide, vacancies are created on the lithium sites of the host. During intercalation, these sites are refilled by lithium. Removal and insertion of lithium ions can lead to several phenomena that can significantly affect the electrochemical properties of the compound. For one, variations in lithium concentration alter the electronic properties of the transition metal oxide host. The valence electron of each lithium ion is generally donated to the host where it can either shift the valence state of the transition metal ion and/or alter the nature of the bonds between the transition metal and the oxygen ions. Simultaneously, lithium removal from the host may structurally destabilize the metal oxide structure or may lead to order-disorder phase transitions between lithium and vacancies once a critical vacancy concentration is reached. These phenomena often affect the voltage characteristic or the lattice parameters of the compound in important ways.

Within the last decade, much attention has been devoted to understanding the properties of Li x Co02, LixNi02, Li x Mn02, Li x Mn204 1 and Li x FeP04 2, currently among the most important candidate cathode materials for rechargeable lithium batteries. Other compounds receiving attention are typically doped variants of the Co, Ni and Mn compounds. While many lithium transition metal oxides have similar crystal structures, either a layered form or one derived from the spinel structure (Li x FeP04 has the olivine crystal structure), they are often characterized by very different electrochemical properties owing to the unique electronic structure of each transition metal. Li x Co02, for example undergoes a concentration driven metal-insulator phase transformation whereby the electrons over much of the lithium concentration range (x>0.75) are delocalized and exhibit metallic properties.3 In contrast, the Li x Mn204 compound in important lithium concentration regions is characterized by more localized electrons with large magnetic moments leading to phenomena such as charge ordering and Jahn-Teller distortions.4–6 Often, phenomena such as these can be rationalized with crude crystal-field and molecular orbital models. More subtle properties such as the relative stability of similar crystal structures, stable ordered lithium-vacancy arrangements and charge-ordered and magnetic-ordered electronic states are more difficult to predict or rationalize with intuition based on simple electronic structure models. It is here that first-principles numerical-schemes for solving the Schrödinger equation of solids are proving invaluable. The record of the last decade of first principles studies of lithium transition metal oxides has demonstrated that these methods are an important new tool in predicting and understanding the properties of these materials.7–40

Keywords

Lithium Concentration Intercalation Compound Rechargeable Lithium Batterie Lithium Anode Similar Crystal Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.M. Thackeray, J.O. Thomas, M.S. Whittingham, MRS Bulletin 25 (2000) 39.Google Scholar
  2. 2.
    A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc. 144 (1997) 1188.CrossRefGoogle Scholar
  3. 3.
    M. Menetrier, I. Saadoune, S. Levasseur, C. Delmas, J. Mater. Chem. 9 (1999) 1135.CrossRefGoogle Scholar
  4. 4.
    E. Greedan, N.P. Raju, A.S. Will, C. Morin, S.M. Shaw, J.N. Reimers, Chem. Mater. 10 (1998) 3058.CrossRefGoogle Scholar
  5. 5.
    J. Rodriguez-Carvajal, G Rousse, C. Masquelier, M. Hervieu, Phys. Rev. Lett. 81 (1998) 4660.CrossRefGoogle Scholar
  6. 6.
    G Rousse, C Masquelier, J. Rodriguez-Carvajal, M. Hervieu, Electrochem. Solid -State Lett. 2(1999) 1.CrossRefGoogle Scholar
  7. 7.
    G Ceder, M.K. Aydinol, A.F. Kohan, Comp. Mat. Sci. 8 (1997) 161.CrossRefGoogle Scholar
  8. 8.
    M. K. Aydinol, A.F. Kohan, G Ceder, G, K. Cho, J. Joannopoulos, Phys. Rev. B 56 (1997) 1354.CrossRefGoogle Scholar
  9. 9.
    M.K. Aydinol, G Ceder, J. Electrochem. Soc. 144 (1997) 3832.CrossRefGoogle Scholar
  10. 10.
    E. Deiss, A. Wokaun, J.L. Barras, C. Daul, P. Dufek, J. Electrochem. Soc. 144 (1997) 3877.CrossRefGoogle Scholar
  11. 11.
    R. Benedek, M.M. Thackeray, L.H. Yang, Phys. Rev. B 56 (1997) 10707.CrossRefGoogle Scholar
  12. 12.
    G Ceder, A.F. Kohan, M.K. Aydinol, P.D. Tepesch, A. Van der Ven, J. Amer. Cer. Soc. 81 (1998) 517.CrossRefGoogle Scholar
  13. 13.
    G Ceder, Y.M. Chiang, D.R. Sadoway, M.K. Aydinol, Y.L Jang, B. Huang, Nature 392 (1998) 694.CrossRefGoogle Scholar
  14. 14.
    C. Wolverton, A. Zunger, Phys. Rev. B 57 (1998) 2242.CrossRefGoogle Scholar
  15. 15.
    A. Van der Ven, M.K. Aydinol, G Ceder, j. Electrochem. Soc. 145 (1998) 2149.CrossRefGoogle Scholar
  16. 16.
    C. Wolverton, A. Zunger, J. Electrochem. Soc. 145 (1998) 2424.CrossRefGoogle Scholar
  17. 17.
    C. Wolverton, A. Zunger, Phys. Rev. Lett. 81 (1998) 606.CrossRefGoogle Scholar
  18. 18.
    A. Van der Ven, M.K. Aydinol, G Ceder, G Kresse, J. Hafner, Phys. Rev. B 58 (1998) 2975.CrossRefGoogle Scholar
  19. 19.
    LBenco, J.L. Barras, M. Atanasov, C.A. Daul, E. Deiss, Solid State Ionics 112 (1998) 225.CrossRefGoogle Scholar
  20. 20.
    A. Van der Ven, G Ceder, Phys. Rev. B 59 (1999) 742.CrossRefGoogle Scholar
  21. 21.
    L. Benco, J. L. Barras, C. A. Daul, E. Deiss, Inorg. Chem. 38 (1999) 20.CrossRefGoogle Scholar
  22. 22.
    M. S. Mishra, G Ceder, Phys. Rev. B 59 (1999) 6120.CrossRefGoogle Scholar
  23. 23.
    L. Benco, J. L. Barras, M. Atanasov, C. Daul, E. Deiss, J. Solid State Chem. 145 (1999) 503.CrossRefGoogle Scholar
  24. 24.
    J. S. Braithwaite, C. R. A. Catlow, J. D. Gale, J. H. Harding, Chem. Mat. 11 (1999) 1990.CrossRefGoogle Scholar
  25. 25.
    R. Benedek, M. M. Thackeray, L. H. Yang, Phys. Rev. B 60 (1999) 6335.CrossRefGoogle Scholar
  26. 26.
    G Ceder, M. S. Mishra, Electrochem. Solid-State Lett. 2 (1999) 550.CrossRefGoogle Scholar
  27. 27.
    G Ceder, A. Van der Ven, Electrochim. Acta, 45 (1999) 131.CrossRefGoogle Scholar
  28. 28.
    S. Buta, D. Morgan, A. Van der Ven, M. K. Aydinol, G Ceder, J Electrochem. Soc. 146 (1999) 4335.CrossRefGoogle Scholar
  29. 29.
    J. S. Braithwaite, C. R. A. Catlow, J. D. Gale, J. H. Harding, P. E. Ngoepe, J. Mat. Chem. 10 (2000) 239.CrossRefGoogle Scholar
  30. 30.
    J. S. Braithwaite, C. R. A. Catlow, J. H. Harding, J. D. Gale, Phys. Chem. Chem. Phys. 2 (2000) 3841.CrossRefGoogle Scholar
  31. 31.
    A. Van der Ven, G Ceder, Electrochem. Solid-State Lett. 3 (2000) 301.CrossRefGoogle Scholar
  32. 32.
    A. Van der Ven, C. Marianetti, D. Morgan, G Ceder, Solid State Ionics 135 (2000) 21.CrossRefGoogle Scholar
  33. 33.
    J. Reed, G Ceder, A. Van der Ven, Electrochem. Solid-State Lett. 4 (2001) 78.CrossRefGoogle Scholar
  34. 34.
    M. E. Arroyo y de Dompablo, C. Marianetti, A. Van der Ven, G Ceder, Phys. Rev. B 63 (2001) 144107.CrossRefGoogle Scholar
  35. 35.
    C. Marianetti, D. Morgan, G Ceder, Phys. Rev. B 63 (2001) 224304.CrossRefGoogle Scholar
  36. 36.
    A. Van der Ven, G Ceder, M. Asta, P. D. Tepesch, Phys. Rev. B 64 184307 (2001) .CrossRefGoogle Scholar
  37. 37.
    G E. Grechnev, R. Ahuja, B. Johansson, O. Eriksson, Phys. Rev. B 65 (2002) 174408.CrossRefGoogle Scholar
  38. 38.
    J. Reed, G Ceder, Electrochem. Solid-State Lett. 5 (2002) A145.CrossRefGoogle Scholar
  39. 39.
    M. E. Arroyo y de Dompablo, A. Van der Ven, G Ceder, Phys. Rev. B 66 (2002) 64112.CrossRefGoogle Scholar
  40. 40.
    M. E. Arroyo y de Dompablo, G Ceder, Chem. Mater. 15 (2003) 63.CrossRefGoogle Scholar
  41. 41.
    P. Hohenberg, W. Kohn, Phys. Rev. B 136 (1964) 864.CrossRefGoogle Scholar
  42. 42.
    R. G Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press (1989) .Google Scholar
  43. 43.
    R. O. Jones, O. Gunnarsson, Rev. Mod. Phys. 61 (1989) 689.CrossRefGoogle Scholar
  44. 44.
    J. M. Sanchez, F. Ducastelle, D. Gratias, Physica 128A (1984) 334.Google Scholar
  45. 45.
    D. de Fontaine, Solid State Phys. 47 (1994) 33.CrossRefGoogle Scholar
  46. 46.
    M. C. Day, J. Selbin, Theoretical Inorganic Chemistry, Reinhold Pub. (1962) .Google Scholar
  47. 47.
    C. J. Ballhausen, Introduction to Ligand Field Theory, McGraw-Hill (1962) .Google Scholar
  48. 48.
    T. M. Dunn, D. S. McClure, R. G Pearson, Crystal Field Theory, Harper and Row (1965) .Google Scholar
  49. 49.
    L. H. Hall, Group Theory and Symmetry in Chemistry, McGraw-Hill (1969) .Google Scholar
  50. 50.
    N. W. Ashcroft, N. D. Mermin, Solid State Physics, Saunders College Publishing (1976) .Google Scholar
  51. 51.
    O. Madelung, Introduction to Solid State Theory, Springer Verlag (1978) .Google Scholar
  52. 52.
    M. Levy, Proc. Natl. Acad. Sci. 76 (1979) 6062.CrossRefGoogle Scholar
  53. 53.
    W. Kohn, L. J. Sham, Phys. Rev. 140 (1965) A1133.CrossRefGoogle Scholar
  54. 54.
    V. I. Anisimov, F. Aryasetiawan, A. I. Lichtenstein, J. Phys.Condens. Matter 9 (1997) 767.CrossRefGoogle Scholar
  55. 55.
    J. P. Perdew, A. Zunger, Phys. Rev. B 23 (1981) 5048.CrossRefGoogle Scholar
  56. 56.
    Z. Szotek, W. M. Temmerman, H. Winter, Phys. Rev. B 47 (1993) 4029.CrossRefGoogle Scholar
  57. 57.
    M. M. Rieger, P. Vogl, Phys. Rev. B 52 (1995) 16567.CrossRefGoogle Scholar
  58. 58.
    S. Goedecker, C. J. Umriga, Phys. Rev. A 55 (1997) 1765.CrossRefGoogle Scholar
  59. 59.
    D. J. Singh, Planewaves, Pseudopotentials and the LAPWMethod, Kluwer Academic Pub. (1994) .Google Scholar
  60. 60.
    J. C. Phillips, L. Kleinman, Phys. Rev. 116 (1959) 287.CrossRefGoogle Scholar
  61. 61.
    M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos, Rev. Mod. Phys. 64 (1992) 1045.CrossRefGoogle Scholar
  62. 62.
    C. Wolverton, private communication (1997) .Google Scholar
  63. 63.
    D. R. Hamann, M. Schluter, C. Chiang, Phys. Rev. Lett. 43 (1979) 1494.CrossRefGoogle Scholar
  64. 64.
    G B. Bachelet, D. R. Hamann, M. Schluter, Phys. Rev. B 26 (1982) 4199.CrossRefGoogle Scholar
  65. 65.
    L. Kleinman, D. M. Bylander, Phys. Rev. Lett. 48 (1982) 1425.CrossRefGoogle Scholar
  66. 66.
    A. M. Rappe, K. M. Rabe, E. Kaxiras, J. D. Joannopoulos, Phys. Rev. B 41 (1990) 1227.CrossRefGoogle Scholar
  67. 67.
    N. Troullier, J. L. Martins, Phys. Rev. B 43 (1991) 1993 .CrossRefGoogle Scholar
  68. 68.
    D. Vanderbilt, Phys. Rev. B 41 (1990) 7892.CrossRefGoogle Scholar
  69. 69.
    M. T. Czyzyk, R. Potze, G A. Sawatzky, Phys. Rev. B 46 (1992) 3729.CrossRefGoogle Scholar
  70. 70.
    J. van Elp, J. L. Wieland, H. Eskes, P. Kuiper, G A. Sawatzky, F. M. F. de Groot, T. S. Turner, Phys. Rev. B 44 (1991) 6090.CrossRefGoogle Scholar
  71. 71.
    L. A. Montoro, M. Abbate, J. M. Rosolen, Electrochem. Solid-State Lett. 3 (2000) 410.CrossRefGoogle Scholar
  72. 72.
    J. Graetz, A. Hightower, C. C. Ahn, R. Yazami, P. Rez, B. Fultz, J. Phys. Chem. B 106 (2002) 1286.CrossRefGoogle Scholar
  73. 73.
    W.-S. Yoon, K.-B. Kim, M.-G Kim, M.-K. Lee, H.-J. Shin, J.-M. Lee, J.-S. Lee, C.-H. Yo, J. Phys. Chem. B 106 (2002) 2526.CrossRefGoogle Scholar
  74. 74.
    J. N. Reimers, J. R. Dahn, J. Electrochem. Soc. 139 (1992) 2091.CrossRefGoogle Scholar
  75. 75.
    T. Ohzuku, A. Ueda, J. Electrochem. Soc. 141 (1994) 2972.CrossRefGoogle Scholar
  76. 76.
    G G Amatucci, J. M. Tarascon, L. C. Klein, J. Electrochem. Soc. 143 (1996) 1114.CrossRefGoogle Scholar
  77. 77.
    C. Delmas, C. Fouassier, P. Hagenmuller, Physica B 99 (1980) 81.CrossRefGoogle Scholar
  78. 78.
    Z. H. Chen, Z. H. Lu, J. R. Dahn, J. Electrochem. Soc. 149 (2002) 1604.CrossRefGoogle Scholar
  79. 79.
    L. Croguennec, S. Levasseur, M. Morcrette, J. M. Tarascon, C. Delmas, Materials Research Society (MRS) Fall meeting, Boston (MA) , Dec. 2-6, 2002.Google Scholar
  80. 80.
    A. Rougier, C. Delmas, A. V. Chadwick, Solid State Commun. 94 (1995) 123.CrossRefGoogle Scholar
  81. 81.
    C. Delmas, M. Menetrier, L. Croguennec, S. Levasseur, J. P. Peres, C. Pouillere, G Prado, L. Fournes, F. Weill, Int. J. Inorg. Mater. 1 (1999) 11.CrossRefGoogle Scholar
  82. 82.
    A. N. Mansour, X. Q. Yang, X. Sun, J. McBreen, L. Croguennec, C. Delmas, J. Electrochem. Soc. 114 (2000) 2104.CrossRefGoogle Scholar
  83. 83.
    J. P. Peres, A. Demourgues, C. Delmas, Solid State Ionics 111 (1998) 135.CrossRefGoogle Scholar
  84. 84.
    A. R. Armstrong, P. G Bruce, Nature 381 (1996) 499.CrossRefGoogle Scholar
  85. 85.
    F. Capitaine, P. Gravereau, C. Delmas, Solid State Ionics 89 (1996) 197.CrossRefGoogle Scholar
  86. 86.
    A. Blyr, C. Sigala, G Amatucci, D. Guyomard, Y Chabre, J. Electrochem. Soc. 145 (1998) 194.CrossRefGoogle Scholar
  87. 87.
    Y. -M. Chiang, D. R. Sadoway, Y. I. Jang, B. Huang, H. Wang, Electrochem. Solid-State Lett. 2 (1999) 107.CrossRefGoogle Scholar
  88. 88.
    Y. Shao-Horn, S. A. Hackney, A. R. Armstrong, P. G Bruce, R. Gitsendanner, C. S. Johnson, M. M. Thackeray, J. Electrochem. Soc. 146 (1999) 2404.CrossRefGoogle Scholar
  89. 89.
    G Vitins, K. West, j. Electrochem. Soc. 144 (1997) 2587.CrossRefGoogle Scholar
  90. 90.
    P. Bruce, A. Armstrong, R. Gitzendanner, J. Mater. Chem. 9 (1998) 193.CrossRefGoogle Scholar
  91. 91.
    B. Ammundsen, J. Desilvestro, T. Groutso, D. Hassell, J. B. Metson, E. Regan, R. Steiner, P. J. Pickering, J. Electrochem. Soc. 147 (2000) 4078.CrossRefGoogle Scholar
  92. 92.
    H. Wang, Y. I. Jang, Y -M. Chiang, Electrochem. Solid-State Lett. 2 (1999) 10.CrossRefGoogle Scholar
  93. 93.
    S. J. Hwang, H. S. Park, J. H. Choy, Chem. Mater. 12 (2000) 1818.CrossRefGoogle Scholar
  94. 94.
    B. Ammundsen, J. Paulsen, I. Davidson, R. S. Liu, C. H. Shen, J. M. Chen, L. Y Jang, J. F. Lee, j. Electrochem. Soc. 149 (2002) A431.CrossRefGoogle Scholar
  95. 95.
    J. S. Kim, C. S. Johnson, M. M. Thackeray, Electrochem. Comm. 4 (2002) 205.CrossRefGoogle Scholar
  96. 96.
    S. H. Kang, J. Kim, M. E. Stoll, D. Abraham, Y K. Sun, K. Amine, J. Power Sources 112 (2002) 41.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2003, First softcover printing 2009

Authors and Affiliations

  • A. Van der Ven
    • 1
  • G. Ceder
    • 1
  1. 1.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations