Liquid Electrolytes: Some Theoretical and Practical Aspects

  • M. Nazri

The basic requirements of a suitable electrolyte for electrochemical devices are high ionic conductivity, low melting and high boiling points, chemical and electrochemical stability, and safety. Electrolyte conductivity and electrochemical stability are key parameters in selecting an electrolyte for modern electrochemical devices such as advanced batteries, fuel cells, super-capacitors, sensors, and electrochromic displays. These parameters, conductivity and electrochemical stability, will receive particular attention in this chapter. Although progress has been made in enhancing the conductivity of solid electrolytes, particularly the polymeric ones, liquid electrolytes are still used in most electrochemical systems. The solvent properties, and dynamics of ion solvent interactions, must be understood in designing new electrolytes. In this chapter, a short but general introduction to properties of solvents and ion-solvent dynamics is discussed.

The history of electrolyte development goes as far back as the work of Greek philosophers in search for a universal solvent, the so-called “Alkahest”. In search of Alkahest, many solvents and chemical rules were discovered such as “like dissolves like” (similia similibus solvuntur) as shown in Table 17.1. Later, the theory of osmotic pressure by van't Hoff (1852–1911), and the theory of electrolyte dissociation by Arrhenius (1859– 1927) were discovered. Many speculations about the nature of solute-solvent interactions and the influence of solvent media on the rate of chemical reaction were proposed in the early eighteen-century. The role of solvents on chemical equilibrium, on tautomerism (i.e. keto-enol tautomerism), and the phenomenon of solvatochromism (shift of UV/Vis absorption bands due to the changes of the index of refraction) were discovered.1,2 Scheibe et al. have correlated the solvating ability of solvents to their degree of influence on reaction rate, chemical equilibrium, and shift in absorption spectra.3


Boiling Point Chemical Equilibrium Liquid Electrolyte High Ionic Conductivity Electrochemical Stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Magat, j. Phys. Chem. A162 (1932) 432.Google Scholar
  2. 2.
    S. E. Sheppard, Chem. Abstx. 37 (1943) 1654.Google Scholar
  3. 3.
    G. Scheibe, E. Felger, G. RoBler, Ber. Dtsch. Chem. Ges. 60 (1927) 1406.CrossRefGoogle Scholar
  4. 4.
    J.H. Hildebrand, J. M. Prausnitz, R. L. Scott, Regular and Related Solutions, VanNorstranf-Reinhold, Princeton, (1970).Google Scholar
  5. 5.
    C. J. F. Bottcher, Theory of Electric Polarization, Vol. I, Second Edition, Elsevier Scientific Publishing Co., New York (1973).Google Scholar
  6. 6.
    R. C. Weast, M. J. Astle, CRC Handbook of Data on Organic Compounds, Vol I and II, CRC Press, Florida, (1985).Google Scholar
  7. 7.
    R. C. Weast, (ed.), Handbook of Chemistry and Physics, 66th Edition, CRC Press, Florida (1986).Google Scholar
  8. 8.
    A. L. McClellan, Table of Experimental Dipole Moments, Freeman Co., San Francisco, (1963).Google Scholar
  9. 9.
    N. H. March, M. P. Tosi, Coulomb Liquids, Academic Press, New York 1984.Google Scholar
  10. 10.
    R. L. Amev, J. Phys. Chem. 72 (1968) 3358.CrossRefGoogle Scholar
  11. 11.
    M. Rabinowiz, A. Pines, J. Am. Chem. Soc. 91 (1969) 1585.CrossRefGoogle Scholar
  12. 12.
    W. H. Keesom, Z. Physik 23 (1922) 225.Google Scholar
  13. 13.
    P. Debye, Z. Physik 22 (1921) 302.Google Scholar
  14. 14.
    J.H. Mahanty, B.W. Ninham, Dispersion Forces, Academic Press, New York (1977).Google Scholar
  15. 15.
    C. H. Yoder, J. Chem. Educ. 54 (1977) 402.CrossRefGoogle Scholar
  16. 16.
    N.E. Hill, W.E. Vaughan, A.H. Price, M. Davice, Dielectric Properties and Molecular Behaviour, Van Norstrand Reinhold Co., London (1969).Google Scholar
  17. 17.
    K.E. Thomas, R.M. Darling, J. Newman, Mathematical Modeling of Lithium Batteries, inAdvaces in Lithium-ion Batteries, (eds. Schalkwijk, W.A., Scrosati,B.), Kluwer Academic / Plenum Publishers, Boston (2002).Google Scholar
  18. 18.
    R. Paetzold, Z. Chem. 15 (1975) 377.Google Scholar
  19. 19.
    R. S. Drago, L.B. Parr, C.S. Chamberlain, J. Am. Chem. Soc. 99 (1977) 3203.CrossRefGoogle Scholar
  20. 20.
    V. Gutmann, Coordination Chemistry in Non-Aqeous Solvents, Springer, Wien, NY (1968).Google Scholar
  21. 21.
    V. Gutmann, Coord. Chem. Rev. 2 (1967) 239.CrossRefGoogle Scholar
  22. 22.
    U. Mayer, Pure Appl. Chem. 41 (1975) 291.CrossRefGoogle Scholar
  23. 23.
    V. Gutmann, Pure Appl. Chem. 15 (1973) 141.Google Scholar
  24. 24.
    U. Mayer, Pure Appl. Chem. 51 (1979) 1697.CrossRefGoogle Scholar
  25. 25.
    R. Schmid, V. A. Sapunov, Chemie Verlag Nethreland(1982).Google Scholar
  26. 26.
    C.J. Bender, Chem. Soc. Rev. 1986, 201.Google Scholar
  27. 27.
    U. Mayer, V. Gutmann, W. Gerger, Pure Appl. Chem. 51 (1979) 1697.CrossRefGoogle Scholar
  28. 28.
    R. Schmid, J. Sol. Chem. 12 (1983) 135.CrossRefGoogle Scholar
  29. 29.
    U. Mayer, Pure Appl. Chem. 51 (1979) 1697.CrossRefGoogle Scholar
  30. 30.
    C. M. Criss, Salomon, M., Thermodynamic Measurements — Interpretation of Thermodynamic Data, in A. K. Covington, T. Dikinson, (eds): Physical Chemistry of Organic Solvent Systems, Plenum Press, London, NY (1973).Google Scholar
  31. 31.
    J. E. Gordon, The Organic Chemistry of Electrolyte Solutions, Wiley, New York (1975).Google Scholar
  32. 32.
    J. A. Jackson, J. F. Lemons, H. Taube, M. Alei, J. A. Jackson, J. Chem. Phys. 41 (1964) 3402.CrossRefGoogle Scholar
  33. 33.
    E. S. Amis, J. F. Hinton, Solvent Effects on Chemical Phenomena, Vol.1, Academic Press, New York (1973).Google Scholar
  34. 34.
    E. S. Amis, Solvation of Ions, in Solutions and Solubilities, Vol. HI, Part 1, of the series Techniques of Chemistry, M. R. J. Dack, (ed.), Wiley-Interscience, NewYork (1975).Google Scholar
  35. 35.
    J. F. Hinton, E. S. Amis, Chem. Rev. 71 (1971) 627.CrossRefGoogle Scholar
  36. 36.
    H. Strehlow, H. Schneider, W. Knoche, Ber Bunsenges. Phys. Chem. 11 (1973) 760, and Pure Appl Chem. 25 (1971) 327.Google Scholar
  37. 37.
    H. Strehlow, H. Koepp, H. Schneider, Z. Phys. Chem. 44 (1966) 49.Google Scholar
  38. 38.
    G. E. Blomgren, J. Power Sources 14 (1985) 39.CrossRefGoogle Scholar
  39. 42.
    K.; M. Abraham, M. J. Alamgir, J. Electrochem. Soc. 137 (1990) 1657.CrossRefGoogle Scholar
  40. 43.
    B. Klessen, R. Aroca, G. A. Nazri, J. Phys. Chem. 100 (1996) 9334.CrossRefGoogle Scholar
  41. 44.
    G. E. Bloomgren, in Lithium Batteries, (ed): J. Gabano, Academic Press, New York 1983, pl3.Google Scholar
  42. 45.
    H. J. Gores, J. Barthal, J. Solution Chem. 9 (1980) 939.CrossRefGoogle Scholar
  43. 46.
    Y. Matsuda, J. Power Sources 19 (1987) 20.Google Scholar
  44. 47.
    J. T. Dudley, D. P. Wilkinson, G. Thomas, R. LeVae, Woo, H. Blom, C. Horvath, M. W. Juzkow, B. Denis, P. Juric, P. Aghakinan, J. R. Dahn, J. Power Sources 35 (1991) 59.CrossRefGoogle Scholar
  45. 48.
    H. Watanabae, T. Nohma, I. Nakane, S. Yoshimura, K. Nishio, T. Saito, J. Power Sources 217 (1993) 43.Google Scholar
  46. 49.
    P. V. S. S. Prabhu, T. P. Kumar, P. N. N. Namboodiri, R. J. Gangadharan, Appl Electrochem. 23 (1993) 151.CrossRefGoogle Scholar
  47. 50.
    D. Aurbach, M. Daroux; P. Faguy, E. B. Yeager, J. Electroanal Chem. 225 (1991) 297.Google Scholar
  48. 51.
    S. K. Lee, Y. Zu, A. Hermann, Y. Geerts, K. Mullen, A. J. Bard, J. Am Chem.Soc. 121 (1999) 3513.CrossRefGoogle Scholar
  49. 52.
    R. Oesten, U. Heider, M. Schmidt, Solid State Ionics 148 (2002) 391.CrossRefGoogle Scholar
  50. 53.
    J-I. Yamaki, Liquid Electrolytes, in Adavances in Lithium-ion Batteries, (W.A. Van Schalkwijk, Scrosati, B., Eds.), Kluwer Academic Plenum Publishers, Boston (2002).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2003, First softcover printing 2009

Authors and Affiliations

  • M. Nazri
    • 1
  1. 1.University of WindsorDepartment of ChemistryWindsorCanada

Personalised recommendations