Skip to main content

Liquid Electrolytes: Some Theoretical and Practical Aspects

  • Chapter
Lithium Batteries

The basic requirements of a suitable electrolyte for electrochemical devices are high ionic conductivity, low melting and high boiling points, chemical and electrochemical stability, and safety. Electrolyte conductivity and electrochemical stability are key parameters in selecting an electrolyte for modern electrochemical devices such as advanced batteries, fuel cells, super-capacitors, sensors, and electrochromic displays. These parameters, conductivity and electrochemical stability, will receive particular attention in this chapter. Although progress has been made in enhancing the conductivity of solid electrolytes, particularly the polymeric ones, liquid electrolytes are still used in most electrochemical systems. The solvent properties, and dynamics of ion solvent interactions, must be understood in designing new electrolytes. In this chapter, a short but general introduction to properties of solvents and ion-solvent dynamics is discussed.

The history of electrolyte development goes as far back as the work of Greek philosophers in search for a universal solvent, the so-called “Alkahest”. In search of Alkahest, many solvents and chemical rules were discovered such as “like dissolves like” (similia similibus solvuntur) as shown in Table 17.1. Later, the theory of osmotic pressure by van't Hoff (1852–1911), and the theory of electrolyte dissociation by Arrhenius (1859– 1927) were discovered. Many speculations about the nature of solute-solvent interactions and the influence of solvent media on the rate of chemical reaction were proposed in the early eighteen-century. The role of solvents on chemical equilibrium, on tautomerism (i.e. keto-enol tautomerism), and the phenomenon of solvatochromism (shift of UV/Vis absorption bands due to the changes of the index of refraction) were discovered.1,2 Scheibe et al. have correlated the solvating ability of solvents to their degree of influence on reaction rate, chemical equilibrium, and shift in absorption spectra.3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Magat, j. Phys. Chem. A162 (1932) 432.

    CAS  Google Scholar 

  2. S. E. Sheppard, Chem. Abstx. 37 (1943) 1654.

    Google Scholar 

  3. G. Scheibe, E. Felger, G. RoBler, Ber. Dtsch. Chem. Ges. 60 (1927) 1406.

    Article  Google Scholar 

  4. J.H. Hildebrand, J. M. Prausnitz, R. L. Scott, Regular and Related Solutions, VanNorstranf-Reinhold, Princeton, (1970).

    Google Scholar 

  5. C. J. F. Bottcher, Theory of Electric Polarization, Vol. I, Second Edition, Elsevier Scientific Publishing Co., New York (1973).

    Google Scholar 

  6. R. C. Weast, M. J. Astle, CRC Handbook of Data on Organic Compounds, Vol I and II, CRC Press, Florida, (1985).

    Google Scholar 

  7. R. C. Weast, (ed.), Handbook of Chemistry and Physics, 66th Edition, CRC Press, Florida (1986).

    Google Scholar 

  8. A. L. McClellan, Table of Experimental Dipole Moments, Freeman Co., San Francisco, (1963).

    Google Scholar 

  9. N. H. March, M. P. Tosi, Coulomb Liquids, Academic Press, New York 1984.

    Google Scholar 

  10. R. L. Amev, J. Phys. Chem. 72 (1968) 3358.

    Article  Google Scholar 

  11. M. Rabinowiz, A. Pines, J. Am. Chem. Soc. 91 (1969) 1585.

    Article  Google Scholar 

  12. W. H. Keesom, Z. Physik 23 (1922) 225.

    Google Scholar 

  13. P. Debye, Z. Physik 22 (1921) 302.

    CAS  Google Scholar 

  14. J.H. Mahanty, B.W. Ninham, Dispersion Forces, Academic Press, New York (1977).

    Google Scholar 

  15. C. H. Yoder, J. Chem. Educ. 54 (1977) 402.

    Article  CAS  Google Scholar 

  16. N.E. Hill, W.E. Vaughan, A.H. Price, M. Davice, Dielectric Properties and Molecular Behaviour, Van Norstrand Reinhold Co., London (1969).

    Google Scholar 

  17. K.E. Thomas, R.M. Darling, J. Newman, Mathematical Modeling of Lithium Batteries, inAdvaces in Lithium-ion Batteries, (eds. Schalkwijk, W.A., Scrosati,B.), Kluwer Academic / Plenum Publishers, Boston (2002).

    Google Scholar 

  18. R. Paetzold, Z. Chem. 15 (1975) 377.

    CAS  Google Scholar 

  19. R. S. Drago, L.B. Parr, C.S. Chamberlain, J. Am. Chem. Soc. 99 (1977) 3203.

    Article  CAS  Google Scholar 

  20. V. Gutmann, Coordination Chemistry in Non-Aqeous Solvents, Springer, Wien, NY (1968).

    Google Scholar 

  21. V. Gutmann, Coord. Chem. Rev. 2 (1967) 239.

    Article  CAS  Google Scholar 

  22. U. Mayer, Pure Appl. Chem. 41 (1975) 291.

    Article  CAS  Google Scholar 

  23. V. Gutmann, Pure Appl. Chem. 15 (1973) 141.

    CAS  Google Scholar 

  24. U. Mayer, Pure Appl. Chem. 51 (1979) 1697.

    Article  CAS  Google Scholar 

  25. R. Schmid, V. A. Sapunov, Chemie Verlag Nethreland(1982).

    Google Scholar 

  26. C.J. Bender, Chem. Soc. Rev. 1986, 201.

    Google Scholar 

  27. U. Mayer, V. Gutmann, W. Gerger, Pure Appl. Chem. 51 (1979) 1697.

    Article  CAS  Google Scholar 

  28. R. Schmid, J. Sol. Chem. 12 (1983) 135.

    Article  CAS  Google Scholar 

  29. U. Mayer, Pure Appl. Chem. 51 (1979) 1697.

    Article  CAS  Google Scholar 

  30. C. M. Criss, Salomon, M., Thermodynamic Measurements — Interpretation of Thermodynamic Data, in A. K. Covington, T. Dikinson, (eds): Physical Chemistry of Organic Solvent Systems, Plenum Press, London, NY (1973).

    Google Scholar 

  31. J. E. Gordon, The Organic Chemistry of Electrolyte Solutions, Wiley, New York (1975).

    Google Scholar 

  32. J. A. Jackson, J. F. Lemons, H. Taube, M. Alei, J. A. Jackson, J. Chem. Phys. 41 (1964) 3402.

    Article  Google Scholar 

  33. E. S. Amis, J. F. Hinton, Solvent Effects on Chemical Phenomena, Vol.1, Academic Press, New York (1973).

    Google Scholar 

  34. E. S. Amis, Solvation of Ions, in Solutions and Solubilities, Vol. HI, Part 1, of the series Techniques of Chemistry, M. R. J. Dack, (ed.), Wiley-Interscience, NewYork (1975).

    Google Scholar 

  35. J. F. Hinton, E. S. Amis, Chem. Rev. 71 (1971) 627.

    Article  CAS  Google Scholar 

  36. H. Strehlow, H. Schneider, W. Knoche, Ber Bunsenges. Phys. Chem. 11 (1973) 760, and Pure Appl Chem. 25 (1971) 327.

    Google Scholar 

  37. H. Strehlow, H. Koepp, H. Schneider, Z. Phys. Chem. 44 (1966) 49.

    Google Scholar 

  38. G. E. Blomgren, J. Power Sources 14 (1985) 39.

    Article  CAS  Google Scholar 

  39. K.; M. Abraham, M. J. Alamgir, J. Electrochem. Soc. 137 (1990) 1657.

    Article  CAS  Google Scholar 

  40. B. Klessen, R. Aroca, G. A. Nazri, J. Phys. Chem. 100 (1996) 9334.

    Article  Google Scholar 

  41. G. E. Bloomgren, in Lithium Batteries, (ed): J. Gabano, Academic Press, New York 1983, pl3.

    Google Scholar 

  42. H. J. Gores, J. Barthal, J. Solution Chem. 9 (1980) 939.

    Article  CAS  Google Scholar 

  43. Y. Matsuda, J. Power Sources 19 (1987) 20.

    Google Scholar 

  44. J. T. Dudley, D. P. Wilkinson, G. Thomas, R. LeVae, Woo, H. Blom, C. Horvath, M. W. Juzkow, B. Denis, P. Juric, P. Aghakinan, J. R. Dahn, J. Power Sources 35 (1991) 59.

    Article  CAS  Google Scholar 

  45. H. Watanabae, T. Nohma, I. Nakane, S. Yoshimura, K. Nishio, T. Saito, J. Power Sources 217 (1993) 43.

    Google Scholar 

  46. P. V. S. S. Prabhu, T. P. Kumar, P. N. N. Namboodiri, R. J. Gangadharan, Appl Electrochem. 23 (1993) 151.

    Article  CAS  Google Scholar 

  47. D. Aurbach, M. Daroux; P. Faguy, E. B. Yeager, J. Electroanal Chem. 225 (1991) 297.

    Google Scholar 

  48. S. K. Lee, Y. Zu, A. Hermann, Y. Geerts, K. Mullen, A. J. Bard, J. Am Chem.Soc. 121 (1999) 3513.

    Article  CAS  Google Scholar 

  49. R. Oesten, U. Heider, M. Schmidt, Solid State Ionics 148 (2002) 391.

    Article  CAS  Google Scholar 

  50. J-I. Yamaki, Liquid Electrolytes, in Adavances in Lithium-ion Batteries, (W.A. Van Schalkwijk, Scrosati, B., Eds.), Kluwer Academic Plenum Publishers, Boston (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC 2003, First softcover printing

About this chapter

Cite this chapter

Nazri, M. (2009). Liquid Electrolytes: Some Theoretical and Practical Aspects. In: Nazri, GA., Pistoia, G. (eds) Lithium Batteries. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-92675-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-92675-9_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-92674-2

  • Online ISBN: 978-0-387-92675-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics