Advertisement

Current Issues of Metallic Lithium Anode

  • M. Ishikawa
  • M. Morita

Metallic lithium has the highest theoretical specific capacity (3860 mAh/g) and the most negative redox potential among all metals. These features have attracted the interest of battery investigators, who have attempted to put lithium metal into practical use in rechargeable battery systems. Its poor charge-discharge cycleability, however, and its potential fire hazards have hindered thus far the development of cells with a metallic lithium anode.1

Keywords

Physical Chemistry Redox Potential Specific Capacity Energy System Energy Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Peled, J. Electwchem. Soc. 126 (1979) 2047.CrossRefGoogle Scholar
  2. 2.
    T.B. Reddy, S. Hossain, “Rechargeable Lithium Batteries (Ambient Temperature)” in D. Linden, T.B. Reddy Eds., Handbook of Batteries, 3rd Edition, McGraw-Hill, New York, 2002, Chapter 34, pp. 34.1–34.62.Google Scholar
  3. 3.
    J.O. Besenhard, J. Electwchem. Soc. 94 (1978) 77.Google Scholar
  4. 4.
    R.A. Huggins, “Lithium Alloy Anodes” in J.O. Besenhard Ed., Handbook of Battery Materials, Wiley-VCH, Weinheim, 1999, pp. 359–381.Google Scholar
  5. 5.
    Y. Toyoguchi, J. Yamaura, T. Matsui, T. Iijima, Proc. Electwchem. Soc. 88–6 (1986) 659.Google Scholar
  6. 6.
    J.O. Besenhard, J. Yang, M. Winter, J. Power Sources 68 (1997) 87.CrossRefGoogle Scholar
  7. 7.
    GL. Henriksen, A.N. Jansen, “Lithium/Iron Sulfide Batteries” in D. Linden, T.B. Reddy Eds., Handbook of Batteries, 3rd Edition, McGraw-Hill, New York, 2002, Chapter 41, pp. 41.1–41.23.Google Scholar
  8. 8.
    P. C. Symons, P. C. Butler, “Advanced Batteries for Electric Vehicles and Emerging Applications-Introduction” in D. Linden, T.B. Reddy Eds., Handbook of Batteries, 3rd Edition, McGraw-Hill, New York, 2002, Chapter 37, pp. 37.1–37.25.Google Scholar
  9. 9.
    K. Kanamura, H. Tamura, Z. Takehara, J. Electroanal. Chem. 333 (1992) 127.CrossRefGoogle Scholar
  10. 10.
    K. Kanamura, H. Tamura, S. Shiraishi, Z. Takehara, Electrochim. Acta 40 (1995) 913.CrossRefGoogle Scholar
  11. 11.
    K. Kanamura, S. Shiraishi, Z. Takehara, J. Electwchem. Soc. 141 (1994) 2379.CrossRefGoogle Scholar
  12. 12.
    Y. Malik, D. Aurbach, P. Dan, A. Meitav, j. Electroanal. Chem. 282 (1990) 73.CrossRefGoogle Scholar
  13. 13.
    D. Aurbach, O. Chusid, J. Electwchem. Soc. 140 (1993) L155.CrossRefGoogle Scholar
  14. 14.
    T. Osaka, T. Momma, T. Tajima, Y Matsumoto, Denki Kagaku 62 (1994) 451.Google Scholar
  15. 15.
    T. Osaka, T. Momma, T. Tajima, Y Matsumoto, J. Electwchem. Soc. 142 (1995) 1057.CrossRefGoogle Scholar
  16. 16.
    M. Ishikawa, K. Otani, M. Morita, Y Matsuda, Electrochim. Acta 41 (1996) 1253.CrossRefGoogle Scholar
  17. 17.
    T. Hirai, I. Yoshimitsu, J. Yamaki, J. Electwchem. Soc. 141 (1994) 611.CrossRefGoogle Scholar
  18. 18.
    M. Ishikawa, Y Takaki, M. Morita, Y Matsuda, J. Electwchem. Soc. 144 (1997) L90.CrossRefGoogle Scholar
  19. 19.
    M. Ishikawa, M. Kanemoto, M. Morita, J. Power Sources 81–82 (1999) 217.CrossRefGoogle Scholar
  20. 20.
    C. Fringant, A. Tranchant, R. Messina, Electrochim. Acta 40 (1995) 513.CrossRefGoogle Scholar
  21. 21.
    D. Aurbach, Y. Ein-Eli, A. Zaban, J. Electrochem. Soc. 141 (1994) LI.Google Scholar
  22. 22.
    D. Aurbach, A. Zaban, Y. Gofer, Y. Ein-Eli, I. Weissman, O. Chusid, O. Abramson, J. Power Sources 54 (1995) 76.CrossRefGoogle Scholar
  23. 23.
    D. Aurbach, A. Zaban, Y. Gofer, O. Abramson, M. Ben-Zion, J. Electrochem. Soc. 142 (1995) 687.CrossRefGoogle Scholar
  24. 24.
    K. Kanamura, H. Tamura, S. Shiraishi, Z. Takehara, J. Electrochem. Soc. 142 (1995) 340.CrossRefGoogle Scholar
  25. 25.
    K. Kanamura, S. Shiraishi, Z. Takehara, J. Electrochem. Soc. 143 (1996) 2187.CrossRefGoogle Scholar
  26. 26.
    S. Shiraishi, K. Kanamura, Z. Takihara, Langmuir 13 (1997) 3542.CrossRefGoogle Scholar
  27. 27.
    K. Naoi, M. Mori, Y. Naruoka, W.M. Lamanna, R. Atanasoski, J. Electrochem. Soc. 146 (1999) 462.CrossRefGoogle Scholar
  28. 28.
    M. Morita, S. Aoki, Y Matsuda, Electrochim. Acta 37 (1992) 119.CrossRefGoogle Scholar
  29. 29.
    M. Ishikawa, S. Yoshitake, M. Morita, Y Matsuda, J. Electrochem. Soc. 141 (1994) L159.CrossRefGoogle Scholar
  30. 30.
    Y. Matsuda, M. Ishikawa, S. Yoshitake, M. Morita, J. Power Sources 54 (1995) 301.CrossRefGoogle Scholar
  31. 31.
    M. Ishikawa, S. Machino, M. Morita, J. Electroanal. Chem. 473 (1999) 279.CrossRefGoogle Scholar
  32. 32.
    M. Ishikawa, S. Machino, M. Morita, Electrochem. 67 (1999) 1200.Google Scholar
  33. 33.
    T. Hirai, I. Yoshimitsu, J. Yamaki, J. Electrochem. Soc. 141 (1994) 2300.CrossRefGoogle Scholar
  34. 34.
    K. Naoi, M. Mori, M. Inoue, T. Wakabayashi, K. Yamauchi, J. Electrochem. Soc. 147 (2000)813.CrossRefGoogle Scholar
  35. 35.
    M. Morita, M. Ishikawa, Final Report on Electrochemistry of Ordered Interfaces: by Grant-in-Aid for Scientific Research on Priority Area (No. 282) from The Ministry of Education, Science, Sports, Culture, Japan, 2000, 57.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2003, First softcover printing 2009

Authors and Affiliations

  • M. Ishikawa
    • 1
  • M. Morita
    • 1
  1. 1.Department of Applied Chemistry and Chemical Engineering, Faculty of EngineeringYamaguchi UniversityYamaguchiJapan

Personalised recommendations