One-parameter models

  • Peter D. Hoff
Part of the Springer Texts in Statistics book series (STS)


A one-parameter model is a class of sampling distributions that is indexed by a single unknown parameter. In this chapter we discuss Bayesian inference for two one-parameter models: the binomial model and the Poisson model. In addition to being useful statistical tools, these models also provide a simple environment within which we can learn the basics of Bayesian data analysis, including conjugate prior distributions, predictive distributions and confidence regions.


Posterior Distribution Prior Distribution Poisson Model Predictive Distribution High Posterior Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of StatisticsUniversity of WashingtonSeattleUSA

Personalised recommendations