Relevant CYP450-mediated Drug Interactions in the ICU

  • I. Spriet
  • W. Meersseman


As multiple drug therapies are often used at the same time, the potential for clinically significant drug interactions in intensive care unit (ICU) patients is large [1]. Moreover, disease-related factors, such as altered drug distribution, renal insufficiency, and hepatic disease or altered protein binding, typically occurring in the critically ill will contribute to the wide interindividual variability in drug exposure and response and to the high risk of drug interactions [2]. The majority of drugs used in the ICU are metabolized by the iso-enzymes of the cytochrome P450 (CYP450) system [3]. This chapter provides a practical overview of CYP450-mediated drug interactions with high relevance to ICU patients.


Intensive Care Unit Drug Interaction Intensive Care Unit Patient CYP450 Enzyme CYP3A4 Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kopp BJ, Erstad BL, Allen ME, Theodorou AA, Priestley G (2006) Medication errors and adverse drug events in an intensive care unit: direct observation approach for detection. Crit Care Med 34: 415–425CrossRefPubMedGoogle Scholar
  2. 2.
    Krishnan V, Murray P (2003) Pharmacologic issues in the critically ill. Clin Chest Med 24: 671–688CrossRefPubMedGoogle Scholar
  3. 3.
    Mann HJ(2006) Drug-associated disease: cytochrome P450 interactions. Crit Care Clin 22: 329–345CrossRefPubMedGoogle Scholar
  4. 4.
    Wilkinson GR (2005) Drug metabolism and variability among patients in drug response. N Engl J Med 352: 2211–2221CrossRefPubMedGoogle Scholar
  5. 5.
    Lewis DF (2004) 57 varieties: the human cytochromes P450. Pharmacogenomics 5: 305–318CrossRefPubMedGoogle Scholar
  6. 6.
    Lin JH, Lu AYH (1998) Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet 35: 361–390CrossRefPubMedGoogle Scholar
  7. 7.
    Pirmohamed M, Park BK (2003) Cytochrome P450 enzyme polymorphisms and adverse drug reactions. Toxicol 192: 23–32CrossRefGoogle Scholar
  8. 8.
    Renton KW (2004) Cytochrome P450 regulation and drug biotransformation during inflammation and infection. Curr Drug Metab 5: 235–243CrossRefPubMedGoogle Scholar
  9. 9.
    Venkatakrishnan K, von Moltke LL, Greenblatt DJ (2000) Effects of the antifungal agents on oxidative drug metabolism. Clin Pharmacokinet 38: 111–180CrossRefPubMedGoogle Scholar
  10. 10.
    Finch CK, Chrisman CR, Baciewicz AM, Self TH (2002) Rifampin and rifabutin drug interactions. An update. Arch Intern Med 162: 985–992Google Scholar
  11. 11.
    Gerson LB, Triadafilopoulos G (2001) Proton pump inhibitors and their drug interactions: an evidence-based approach. Eur J Gastroenterol Hepatol 13: 611–616CrossRefPubMedGoogle Scholar
  12. 12.
    Czock D, Keller F, Rasche FM, Häussler U (2005) Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet 44: 61–98CrossRefPubMedGoogle Scholar
  13. 13.
    Perucca E (2005) Clinically relevant drug interactions with antiepileptic drugs. Br J Clin Pharmacol 61: 246–255CrossRefGoogle Scholar
  14. 14.
    Pai MP, Momary KM, Rodvold KA (2006) Antibiotic drug interactions. Med Clin N Am 90: 1223–1255CrossRefPubMedGoogle Scholar
  15. 15.
    Saad AH, DePestel D, Carver P (2006) Factors influencing the magnitude and clinical significance of drug interactions between azole antifungals and select immunosuppressants. Pharmacotherapy 26: 1730–1744CrossRefPubMedGoogle Scholar
  16. 16.
    Doherty MM, Charman WH (2002) The mucosa of the small intestine: how clinically relevant as an organ of drug metabolism. Clin Pharmacokinet 41: 235–253CrossRefPubMedGoogle Scholar
  17. 17.
    Gorski JC, Jones DR, Haehner-Daniels BD, Hamman MA, O’Mara EM, Hall SD (1998) The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther 64: 133–143CrossRefPubMedGoogle Scholar
  18. 18.
    Ahonen J, Olkkola KT, Takala A, Neuvonen PJ (1999) Interaction between fluconazole and midazolam in intensive care patients. Acta Anaesthesiol Scand 43: 509–514CrossRefPubMedGoogle Scholar
  19. 19.
    Kress JP, Pohlman AS, O’Connor MF, Hall JB (2000) Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med 342: 1471–1477CrossRefPubMedGoogle Scholar
  20. 20.
    Leather HL (2004) Drug interactions in the hematopoetic stem cell transplant (HSCT) recipient: what every transplanter needs to know. Bone Marrow Transplant 33: 137–152CrossRefPubMedGoogle Scholar
  21. 21.
    Karasu Z, Gurakar A, Carlson J, et al (2001) Acute tacrolimus overdose and treatment with phenytoin in liver transplant recipients. J Okla State Med Assoc 94: 121–123PubMedGoogle Scholar
  22. 22.
    McLaughlin GE, Gonzalez-Rossique M, Gelman B, Kato T (2000) Use of phenobarbital in the management of acute tacrolimus toxicity: a case report. Transplant Proc 32: 665–668CrossRefPubMedGoogle Scholar
  23. 23.
    Palkama VJ, Neuvonen PJ, Olkolla KT (1998) The CYP3A4 inhibitor itraconazole has no effect on the pharmacokinetics and pharmacodynamics of i.v. fentanyl. Br J Anaesth 81: 598–600PubMedGoogle Scholar
  24. 24.
    Tempelhoff R, Modica P, Spitznagel E (1988) Increased fentanyl requirement in patients receiving long-term anticonvulsant therapy. Anesthesiology 69: A594 (abst)CrossRefGoogle Scholar
  25. 25.
    Beers R, Camporesi E (2004) Remifentanil update: clinical science and utility. CNS Drugs 18: 1085–1104CrossRefPubMedGoogle Scholar
  26. 26.
    Anderson GD (2008) Pharmacokinetic, pharmacodynamic, and pharmacogenetic targeted therapy of antiepileptic drugs. Ther Drug Monit 30: 173–180CrossRefPubMedGoogle Scholar
  27. 27.
    Holbrook AM, Pereira JA, Labiris R, et al (2005) Systematic overview of warfarin and its drug and food interactions. Arch Intern Med 165: 1095–1106CrossRefPubMedGoogle Scholar
  28. 28.
    Schwarz UI, Ritchie MD, Bradford Y, et al (2008) Genetic determinants of response to warfarin during initial anticoagulation. N Engl J Med 358: 999–1008CrossRefPubMedGoogle Scholar
  29. 29.
    Limdi NA, Veenstra DL (2008) Warfarin pharmacogenetics. Pharmacother 28: 1084–1087CrossRefGoogle Scholar
  30. 30.
    Ozawa S, Soyama A, Saeki M, et al (2004) Ethnic differences in genetic polymorphisms of CYP2D6, CYP2C19, CYP3As and MDR1/ABCB1. Drug Metab Pharmacokinet 19: 83–95CrossRefPubMedGoogle Scholar
  31. 31.
    Stamer UM, Stüber F, Muders T, Musshoff F (2008) Respiratory depression with tramadol in a patient with renal impairment and CYP2D6 gene duplication. Anesth Analg 107: 926–929CrossRefPubMedGoogle Scholar
  32. 32.
    Gashe Y, Daaili Y, Fathi M, et al (2004) Codeine intoxication associated with ultrarapid CYP2D6 metabolism. N Engl J Med 351: 2827–2837CrossRefGoogle Scholar
  33. 33.
    U.S. Food and Drug Administration. Center for Devices and Radiological Health consumer information. New device clearance. Roche Amplichip cytochrome P450 genotyping test and Affymetrix GeneChip Microarray Instrumentation System — K042259. Available from: Accessed, Nov 2008Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • I. Spriet
    • 1
  • W. Meersseman
    • 2
  1. 1.Pharmacy DepartmentUniversity HospitalLeuvenBelgium
  2. 2.Medical Intensive Care UnitUniversity HospitalLeuvenBelgium

Personalised recommendations