Skip to main content

Optimizing Drug Dosing in the ICU

  • Conference paper
Intensive Care Medicine
  • 1360 Accesses

Abstract

Patients admitted to the intensive care unit (ICU) may exhibit multiple organ dysfunctions and usually require treatment with a wide range of drugs such as sedatives, analgesics, neuromuscular blockers, and antimicrobials [1]. Recommendations for the dosing regimens in ICU patients are often extrapolated from clinical trials in healthy volunteers or non-ICU patients. This extrapolation assumes similar drug behavior (pharmacokinetics and pharmacodynamics) among ICU and other patients or healthy volunteers. However, it is well described that many drugs used in critically ill patients may have alterations of the pharmacokinetic and pharmacodynamic properties due to pathophysiological changes or drug interactions [14]. These changes may occur even within a single patient at varying stages of their illness and, therefore, critically ill patients offer unique challenges in drug dosing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Power BM, Forbes AM, van Heerden PV, Ilett KF (1998) Pharmacokinetics of drugs used in critically ill adults. Clin Pharmacokinet 34: 25–56

    Article  CAS  PubMed  Google Scholar 

  2. Boucher BA, Wood GC, Swanson JM (2006) Pharmacokinetic changes in critical illness. Crit Care Clin 22: 255–271

    Article  CAS  PubMed  Google Scholar 

  3. Lipman J (2000) Towards better ICU antibiotic dosing. Crit Care Resusc 2: 282–289

    CAS  PubMed  Google Scholar 

  4. Wagnerand BK, O’Hara DA (1997) Pharmacokinetics and pharmacodynamics of sedatives and analgesics in the treatment of agitated critically ill patients. Clin Pharmacokinet 33: 426–453

    Article  Google Scholar 

  5. Benko R, Matuz M, Doro P, et al (2007) Pharmacokinetics and pharmacodynamics of levofloxacin in critically ill patients with ventilator-associated pneumonia. Int J Antimicrob Agents 30: 162–168

    Article  CAS  PubMed  Google Scholar 

  6. Fish DN, Teitelbaum I, Abraham E (2005) Pharmacokinetics and pharmacodynamics of imipenem during continuous renal replacement therapy in critically ill patients. Antimicrob Agents Chemother 49: 2421–2428

    Article  CAS  PubMed  Google Scholar 

  7. Johnston AJ, Steiner LA, O’Connell M, Chatfield DA, Gupta AK, Menon DK (2004) Pharmacokinetics and pharmacodynamics of dopamine and norepinephrine in critically ill head-injured patients. Intensive Care Med 30: 45–50

    Article  PubMed  Google Scholar 

  8. Vincent JL, Spapen HD, Creteur J, et al (2006) Pharmacokinetics and pharmacodynamics of once-weekly subcutaneous epoetin alfa in critically ill patients: results of a randomized, double-blind, placebo-controlled trial. Crit Care Med 34: 1661–1667

    Article  CAS  PubMed  Google Scholar 

  9. Mohr JF, Wanger A, Rex JH (2004) Pharmacokinetic/pharmacodynamic modeling can help guide targeted antimicrobial therapy for nosocomial gram-negative infections in critically ill patients. Diagn Microbiol Infect Dis 48: 125–130

    Article  CAS  PubMed  Google Scholar 

  10. de Wildt SN, de Hoog M, Vinks AA, van der Giesen E, van den Anker JN (2003) Population pharmacokinetics and metabolism of midazolam in pediatric intensive care patients. Crit Care Med 31: 1952–1958

    Article  PubMed  Google Scholar 

  11. Herfindaland ET, Gourley DR (2000) Textbook of Therapeutics: Drug and Disease Management. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  12. Siebert GA, Hung DY, Chang P, Roberts MS (2004) Ion-trapping, microsomal binding, and unbound drug distribution in the hepatic retention of basic drugs. J Pharmacol Exp Ther 308: 228–235

    Article  CAS  PubMed  Google Scholar 

  13. Laznicekand M, Laznickova A (1995) The effect of lipophilicity on the protein binding and blood cell uptake of some acidic drugs. J Pharm Biomed Anal 13: 823–828

    Article  Google Scholar 

  14. Herve F, Urien S, Albengres E, Duche JC, Tillement JP (1994) Drug binding in plasma. A summary of recent trends in the study of drug and hormone binding. Clin Pharmacokinet 26: 44–58

    Article  CAS  PubMed  Google Scholar 

  15. Martyn JA, Abernethy DR, Greenblatt DJ (1984) Plasma protein binding of drugs after severe burn injury. Clin Pharmacol Ther 35: 535–539

    CAS  PubMed  Google Scholar 

  16. Hammons KB, Edwards RF, Rice WY (2006) Golf-inhibiting gynecomastia associated with atorvastatin therapy. Pharmacotherapy 26: 1165–1168

    Article  PubMed  Google Scholar 

  17. Benet LZ, Hoener BA (2002) Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther 71: 115–121

    Article  CAS  PubMed  Google Scholar 

  18. Vrhovac B, Sarapa N, Bakran I, et al (1995) Pharmacokinetic changes in patients with oedema. Clin Pharmacokinet 28: 405–418

    Article  CAS  PubMed  Google Scholar 

  19. Barlage S, Frohlich D, Bottcher A, et al (2001) ApoE-containing high density lipoproteins and phospholipid transfer protein activity increase in patients with a systemic inflammatory response. J Lipid Res 42: 281–290

    CAS  PubMed  Google Scholar 

  20. Sampliner R, Perrier D, Powell R, Finley P (1984) Influence of ascites on tobramycin pharmacokinetics. J Clin Pharmacol 24: 43–46

    CAS  PubMed  Google Scholar 

  21. Buijk SL, Gyssens IC, Mouton JW, Van Vliet A, Verbrugh HA, Bruining HA (2002) Pharmacokinetics of ceftazidime in serum and peritoneal exudate during continuous versus intermittent administration to patients with severe intra-abdominal infections. J Antimicrob Chemother 49: 121–128

    Article  CAS  PubMed  Google Scholar 

  22. Botha FJ, van der Bijl P, Seifart HI, Parkin DP (1996) Fluctuation of the volume of distribution of amikacin and its effect on once-daily dosage and clearance in a seriously ill patient. Intensive Care Med 22: 443–446

    Article  CAS  PubMed  Google Scholar 

  23. Ronchera-Oms CL, Tormo C, Ordovas JP, Abad J, Jimenez NV (1995) Expanded gentamicin volume of distribution in critically ill adult patients receiving total parenteral nutrition. J Clin Pharm Ther 20: 253–258

    Article  CAS  PubMed  Google Scholar 

  24. Reaand RS, Capitano B (2007) Optimizing use of aminoglycosides in the critically ill. Semin Respir Crit Care Med 28: 596–603

    Article  Google Scholar 

  25. Mimoz O, Schaeffer V, Incagnoli P, et al (2001) Co-amoxiclav pharmacokinetics during posttraumatic hemorrhagic shock. Crit Care Med 29: 1350–1355

    Article  CAS  PubMed  Google Scholar 

  26. Park GR (1996) Molecular mechanisms of drug metabolism in the critically ill. Br J Anaesth 77: 32–49

    CAS  PubMed  Google Scholar 

  27. McKindley DS, Hanes S, Boucher BA (1998) Hepatic drug metabolism in critical illness. Pharmacotherapy 18: 759–778

    CAS  PubMed  Google Scholar 

  28. Aninat C, Seguin P, Descheemaeker PN, Morel F, Malledant Y, Guillouzo A (2008) Catecholamines induce an inflammatory response in human hepatocytes. Crit Care Med 36: 848–854

    Article  CAS  PubMed  Google Scholar 

  29. Boucher BA, Kuhl DA, Fabian TC, Robertson JT (1991) Effect of neurotrauma on hepatic drug clearance. Clin Pharmacol Ther 50: 487–497

    Article  CAS  PubMed  Google Scholar 

  30. Meier-Hellmann A, Reinhart K, Bredle DL, Specht M, Spies CD, Hannemann L (1997) Epinephrine impairs splanchnic perfusion in septic shock. Crit Care Med 25: 399–404

    Article  CAS  PubMed  Google Scholar 

  31. Obritsch MD, Bestul DJ, Jung R, Fish DN, MacLaren R (2004) The role of vasopressin in vasodilatory septic shock. Pharmacotherapy 24: 1050–1063

    Article  CAS  PubMed  Google Scholar 

  32. De Backer D, Creteur J, Silva E, Vincent JL (2003) Effects of dopamine, norepinephrine, and epinephrine on the splanchnic circulation in septic shock: which is best? Crit Care Med 31: 1659–1667

    Article  PubMed  Google Scholar 

  33. Weinbren MJ (1999) Pharmacokinetics of antibiotics in burn patients. J Antimicrob Chemother 44: 319–327

    Article  CAS  PubMed  Google Scholar 

  34. Kumar A, Roberts D, Wood KE, et al (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34: 1589–1596

    Article  PubMed  Google Scholar 

  35. Lipman J, Wallis SC, Boots RJ (2003) Cefepime versus cefpirome: the importance of creatinine clearance. Anesth Analg 97: 1149–1154

    Article  CAS  PubMed  Google Scholar 

  36. Han TH, Lee JH, Kwak IS, Kil HY, Han KW, Kim KM (2005) The relationship between bispectral index and targeted propofol concentration is biphasic in patients with major burns. Acta Anaesthesiol Scand 49: 85–91

    Article  CAS  PubMed  Google Scholar 

  37. Tschida SJ, Hoey LL, Nahum A, Vance-Bryan K (1995) Atracurium resistance in a critically Ill patient. Pharmacotherapy 15: 533–539

    CAS  PubMed  Google Scholar 

  38. Link E, Parish S, Bowman L, et al (2008) SLCOBI Variants and statin-induced myopathy — a genomewide study. N Engl J Med 359: 789–799

    Article  CAS  PubMed  Google Scholar 

  39. Zeitlinger MA, Dehghanyar P, Mayer BX, et al (2003) Relevance of soft-tissue penetration by levofloxacin for target site bacterial killing in patients with sepsis. Antimicrob Agents Chemother 47: 3548–3553

    Article  CAS  PubMed  Google Scholar 

  40. Denaroand CP, Ravenscroft PJ (1989) Comparison of Sawchuk-Zaske and Bayesian forecasting for aminoglycosides in seriously ill patients. Br J Clin Pharmacol 28: 37–44

    Google Scholar 

  41. Aarons L (1991) Population pharmacokinetics: theory and practice. Br J Clin Pharmacol 32: 669–670

    CAS  PubMed  Google Scholar 

  42. U.S. Department of Health and Human Services, FDA, CDER, CBER (1999) Guidance for industry: population pharmacokinetics. Available at: http://www.fda.gov/cber/gdlns/popharm. pdf Accessed Nov 2008

    Google Scholar 

  43. Steimer JL, Mallet A, Golmard JL, Boisvieux JF (1984) Alternative approaches to estimation of population pharmacokinetic parameters: comparison with the nonlinear mixed-effect model. Drug Metab Rev 15: 265–292

    Article  CAS  PubMed  Google Scholar 

  44. Sheiner LB, Beal S, Rosenberg B, Marathe VV (1979) Forecasting individual pharmacokinetics. Clin Pharmacol Ther 26: 294–305

    CAS  PubMed  Google Scholar 

  45. Roberts JA, Kruger P, Paterson DL, Lipman J (2008) Antibiotic resistance—what’s dosing got to do with it? Crit Care Med 36: 2433–2440

    Article  CAS  PubMed  Google Scholar 

  46. del Mar Fernandez de Gatta Garcia M, Revilla N, Calvo MV, Dominguez-Gil A, Sanchez Navarro A (2007) Pharmacokinetic/pharmacodynamic analysis of vancomycin in ICU patients. Intensive Care Med 33: 279–285

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, X., Kruger, P., Roberts, M.S. (2009). Optimizing Drug Dosing in the ICU. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92278-2_78

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-92278-2_78

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-92277-5

  • Online ISBN: 978-0-387-92278-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics