Sepsis-associated Encephalopathy

  • S. Siami
  • A. Polito
  • T. Sharshar


Encephalopathy is a frequent but also a severe neurological manifestation of sepsis. It is clinically characterized by changes in mental status and motor activity ranging from delirium to coma and from agitation to hypoactivity [1]. Agitation and somnolence can occur alternately. Paratonic rigidity, asterixis, tremor, and multifocal myoclonus are other but less frequent motor symptoms. Encephalopathy is associated with altered electroencephalographic (EEG) activity that, depending on severity, ranges from excessive theta to burst suppression [1, 2]. Encephalopathy can be accompanied by elevated plasma levels of, for example, neuron-specific enolase (NSE) and S-100 β-protein [1, 2], which are however not correlated with clinical or EEG severity [1, 2]. Brain magnetic resonance imaging (MRI) can reveal cerebral infarcts or posterior reversible encephalopathy syndrome (PRESS) but also localized to diffuse leukoencephalopathy [3, 4]. It has to be noted that brain MRI may fail to detect some brain lesions observed in neuropathological studies, such as hemorrhages related to disseminated intravascular coagulopathy (DIC), microabscesses or multifocal necrotizing leukoencephalopathy [5].


Cerebral Blood Flow Posterior Reversible Encephalopathy Syndrome Septic Shock Patient Septic Encephalopathy Vanadyl Sulfate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ebersoldt M, Sharshar T, Annane D (2007) Sepsis-associated delirium. Intensive Care Med 33: 941–950CrossRefPubMedGoogle Scholar
  2. 2.
    Siami S, Annane D, Sharshar T (2008) The encephalopathy in sepsis. Crit Care Clin 24: 67–82CrossRefPubMedGoogle Scholar
  3. 3.
    Sharshar T, Carlier R, Bernard F, et al. (2007) Brain lesions in septic shock: a magnetic resonance imaging study. Intensive Care Med 33: 798–806CrossRefPubMedGoogle Scholar
  4. 4.
    Bartynski WS, Boardman JF, Zeigler ZR, Shadduck RK, Lister J (2006) Posterior reversible encephalopathy syndrome in infection, sepsis, and shock. AJNR Am J Neuroradiol 27: 2179–2190PubMedGoogle Scholar
  5. 5.
    Sharshar T, Annane D, de la Grandmaison G, et al. (2004) The neuropathology of septic shock. Brain Pathol 14: 21–33PubMedCrossRefGoogle Scholar
  6. 6.
    Eidelman LA, Putterman D, Putterman C, Sprung CL (1996) The spectrum of septic encephalopathy. Definitions, etiologies, and mortalities. JAMA 275: 470–473CrossRefPubMedGoogle Scholar
  7. 7.
    Girard TD, Pandharipande PP, Ely EW (2008) Delirium in the intensive care unit. Crit Care 12 (Suppl 3): S3Google Scholar
  8. 8.
    Semmler A, Frisch C, Debeir T, et al (2007) Long-term cognitive impairment, neuronal loss and reduced cortical cholinergic innervation after recovery from sepsis in a rodent model. Exp Neurol 204: 733–740CrossRefPubMedGoogle Scholar
  9. 9.
    Kadoi Y, Saito S (1996) An alteration in the gamma-aminobutyric acid receptor system in experimentally induced septic shock in rats. Crit Care Med 24: 298–305CrossRefPubMedGoogle Scholar
  10. 10.
    Kadoi Y, Saito S, Kunimoto F, Imai T, Fujita T (1996) Impairment of the brain beta-adrenergic system during experimental endotoxemia. J Surg Res 61: 496–502CrossRefPubMedGoogle Scholar
  11. 11.
    Hellstrom IC, Danik M, Luheshi GN, Williams S (2005) Chronic LPS exposure produces changes in intrinsic membrane properties and a sustained IL-beta-dependent increase in GABAergic inhibition in hippocampal CA1 pyramidal neurons. Hippocampus 15: 656–664CrossRefPubMedGoogle Scholar
  12. 12.
    Pavlov VA, Ochani M, Gallowitsch-Puerta M, et al (2006) Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proc Natl Acad Sci USA 103: 5219–5223CrossRefPubMedGoogle Scholar
  13. 13.
    Semmler A, Hermann S, Mormann F, et al (2008) Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism. J Neuroinflammation 5:38CrossRefPubMedGoogle Scholar
  14. 14.
    Basler T, Meier-Hellmann A, Bredle D, Reinhart K (2002) Amino acid imbalance early in septic encephalopathy. Intensive Care Med 28: 293–298CrossRefPubMedGoogle Scholar
  15. 15.
    Barichello T, Fortunato JJ, Vitali AM, et al (2006) Oxidative variables in the rat brain after sepsis induced by cecal ligation and perforation. Crit Care Med 34: 886–889CrossRefPubMedGoogle Scholar
  16. 16.
    d’Avila JC, Santiago AP, Amancio RT, et al (2008) Sepsis induces brain mitochondrial dysfunction. Crit Care Med 36: 1925–1932.CrossRefPubMedGoogle Scholar
  17. 17.
    Chan JY, Chang AY, Wang LL, Ou CC, Chan SH (2007) Protein kinase C-dependent mitochondrial translocation of proapoptotic protein Bax on activation of inducible nitric-oxide synthase in rostral ventrolateral medulla mediates cardiovascular depression during experimental endotoxemia. Mol Pharmacol 71: 1129–1139CrossRefPubMedGoogle Scholar
  18. 18.
    Christians ES, Yan LJ, Benjamin IJ (2002) Heat shock factor 1 and heat shock proteins: critical partners in protection against acute cell injury. Crit Care Med 30: S43–50CrossRefGoogle Scholar
  19. 19.
    Hotchkiss RS, Karl IE (1992) Reevaluation of the role of cellular hypoxia and bioenergetic failure in sepsis. JAMA 267: 1503–1510.CrossRefPubMedGoogle Scholar
  20. 20.
    Messaris E, Memos N, Chatzigianni E, et al (2004) Time-dependent mitochondrial-mediated programmed neuronal cell death survival in sepsis. Crit Care Med 32: 1764–1770CrossRefPubMedGoogle Scholar
  21. 21.
    Semmler A, Okulla T, Sastre M, Dumitrescu-Ozimek L, Heneka MT (2005) Systemic inflammation induces apoptosis with variable vulnerability of different brain regions. J Chem Neuroanat 30: 144–157CrossRefPubMedGoogle Scholar
  22. 22.
    Sharshar T, Gray F, Lorin de la Grandmaison G, et al (2003) Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet 362: 799–1805CrossRefGoogle Scholar
  23. 23.
    Villmann C, Becker CM (2007) On the hypes and falls in neuroprotection: targeting the NMDA receptor. Neuroscientist 13: 594–615CrossRefPubMedGoogle Scholar
  24. 24.
    Toklu HZ, Uysal MK, Kabasakal L, et al (2009) The effects of riluzole on neurological, brain biochemical, and histological changes in early and late term of sepsis in rats. J Surg Res (in press)Google Scholar
  25. 25.
    Wilson JX, Dragan M (2005) Sepsis inhibits recycling and glutamate-stimulated export of ascorbate by astrocytes. Free Radic Biol Med 39: 990–998CrossRefPubMedGoogle Scholar
  26. 26.
    Korcok J, Wu F, Tyml K, Hammond RR, Wilson JX (2002) Sepsis inhibits reduction of dehydroascorbic acid and accumulation of ascorbate in astroglial cultures: intracellular ascorbate depletion increases nitric oxide synthase induction and glutamate uptake inhibition. J Neurochem 81: 185–193CrossRefPubMedGoogle Scholar
  27. 27.
    Voigt K, Kontush A, Stuerenburg HJ, et al (2002) Decreased plasma and cerebrospinal fluid ascorbate levels in patients with septic encephalopathy. Free Radic Res 36: 735–739CrossRefPubMedGoogle Scholar
  28. 28.
    Brown GC, Bal-Price A (2003) Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol 27: 325–355CrossRefPubMedGoogle Scholar
  29. 29.
    Wang JY, Yang JM, Tao PL, Yang SN (2001) Synergistic apoptosis induced by bacterial endotoxin lipopolysaccharide and high glucose in rat microglia. Neurosci Lett 304: 177–180CrossRefPubMedGoogle Scholar
  30. 30.
    Pfister D, Siegemund M, Dell-Kuster S, et al (2008) Cerebral perfusion in sepsis-associated delirium. Crit Care 12:R63CrossRefPubMedGoogle Scholar
  31. 31.
    Papadopoulos MC, Lamb FJ, Moss RF, et al (1999) Faecal peritonitis causes oedema and neuronal injury in pig cerebral cortex. Clin Sci (Lond) 96: 461–466CrossRefGoogle Scholar
  32. 32.
    Handa O, Stephen J, Cepinskas G (2008) Role of eNOS-derived nitric oxide (NO) in activation and dysfunction of cerebrovascular endothelial cells during early onsets of sepsis. Am J Physiol Heart Circ Physiol 1712–1719Google Scholar
  33. 33.
    Van den Berghe G, Schoonheydt K, Becx P, Bruyninckx F, Wouters PJ (2005) Insulin therapy protects the central and peripheral nervous system of intensive care patients. Neurology 64: 1348–1353PubMedGoogle Scholar
  34. 34.
    Bruno A, Kent TA, Coull BM, et al (2008) Treatment of hyperglycemia in ischemic stroke (THIS): a randomized pilot trial. Stroke 39: 384–389CrossRefPubMedGoogle Scholar
  35. 35.
    Maher F, Vannucci SJ, Simpson IA (1994) Glucose transporter proteins in brain. FASEB J 8: 1003–1011.PubMedGoogle Scholar
  36. 36.
    Xaio H, Banks WA, Niehoff ML, Morley JE (2001) Effect of LPS on the permeability of the blood-brain barrier to insulin. Brain Res 896: 36–42CrossRefPubMedGoogle Scholar
  37. 37.
    Kaal EC, Vecht CJ (2004) The management of brain edema in brain tumors. Curr Opin Oncol 16: 593–600CrossRefPubMedGoogle Scholar
  38. 38.
    Bauer B, Hartz AM, Fricker G, Miller DS (2005) Modulation of p-glycoprotein transport function at the blood-brain barrier. Exp Biol Med (Maywood) 230: 118–127Google Scholar
  39. 39.
    Sierra A, Gottfried-Blackmore A, Milner TA, McEwen BS, Bulloch K (2008) Steroid hormone receptor expression and function in microglia. Glia 56: 659–674CrossRefPubMedGoogle Scholar
  40. 40.
    Weiland NG, Orchinik M, Tanapat P (1997) Chronic corticosterone treatment induces parallel changes in N-methyl-D-aspartate receptor subunit messenger RNA levels and antagonist binding sites in the hippocampus. Neuroscience 78: 653–662CrossRefPubMedGoogle Scholar
  41. 41.
    Schelling G, Roozendaal B, Krauseneck T, et al (2006) Efficacy of hydrocortisone in preventing posttraumatic stress disorder following critical illness and major surgery. Ann NY Acad Sci 1071: 46–53CrossRefPubMedGoogle Scholar
  42. 42.
    Kadoi Y, Goto F (2004) Selective inducible nitric oxide inhibition can restore hemodynamics, but does not improve neurological dysfunction in experimentally-induced septic shock in rats. Anesth Analg 99: 212–220CrossRefPubMedGoogle Scholar
  43. 43.
    Li H, Forstermann U (2000) Nitric oxide in the pathogenesis of vascular disease. J Pathol 190: 244–254CrossRefPubMedGoogle Scholar
  44. 44.
    Lopez A, Lorente JA, Steingrub J, et al (2004) Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med 32: 21–30CrossRefPubMedGoogle Scholar
  45. 45.
    Veszelka S, Urbanyi Z, Pazmany T, et al (2003) Human serum amyloid P component attenuates the bacterial lipopolysaccharide-induced increase in blood-brain barrier permeability in mice. Neurosci Lett 352: 57–60CrossRefPubMedGoogle Scholar
  46. 46.
    Esen F, Erdem T, Aktan D, et al (2005) Effect of magnesium sulfate administration on bloodbrain barrier in a rat model of intraperitoneal sepsis: a randomized controlled experimental study. Crit Care 9:R18–23CrossRefPubMedGoogle Scholar
  47. 47.
    Toklu HZ, Tunali Akbay T, Velioglu-Ogunc A, et al (2008) Silymarin, the antioxidant component of Silybum marianum, prevents sepsis-induced acute lung and brain injury. J Surg Res 145: 214–222CrossRefPubMedGoogle Scholar
  48. 48.
    Hasselgren PO, Fischer JE (1986) Septic encephalopathy. Etiology and management. Intensive Care Med 12: 13–16CrossRefPubMedGoogle Scholar
  49. 49.
    Wratten ML (2008) Therapeutic approaches to reduce systemic inflammation in septic-associated neurologic complications. Eur J Anaesthesiol Suppl 42: 1–7CrossRefPubMedGoogle Scholar
  50. 50.
    Johnson DR, O’Connor JC, Dantzer R, Freund GG (2005) Inhibition of vagally mediated immune-to-brain signaling by vanadyl sulfate speeds recovery from sickness. Proc Natl Acad Sci USA 102: 15184–15189CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • S. Siami
    • 1
  • A. Polito
    • 1
  • T. Sharshar
    • 1
  1. 1.General Intensive Care UnitRaymond Poincaré Teaching Hospital (AP-HP)GarchesFrance

Personalised recommendations