The Role of Imaging in Acute Brain Injury

  • R. D. Stevens
  • A. Pustavoitau
  • P. van Zijl


There is increasing awareness of the preponderance and complexity of neurological dysfunction in the intensive care unit (ICU). The critical care physician has a central role in the evaluation and treatment not only of patients admitted with complex traumatic and non-traumatic brain injuries, but also of patients who develop secondary neurological dysfunction as a result of a systemic insult such as cardiac arrest, liver failure, or sepsis.


Fractional Anisotropy Compute Tomography Angiography Diffusion Tensor Imaging Hepatic Encephalopathy Acute Ischemic Stroke 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moustafa RR, Baron JC (2007) Clinical review: Imaging in ischaemic stroke — implications for acute management. Crit Care 11: 227CrossRefPubMedGoogle Scholar
  2. 2.
    Kidwell CS, Wintermark M (2008) Imaging of intracranial haemorrhage. Lancet Neurol 7: 256–267CrossRefPubMedGoogle Scholar
  3. 3.
    Chalela JA, Kidwell CS, Nentwich LM, et al (2007) Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet 369: 293–298CrossRefPubMedGoogle Scholar
  4. 4.
    Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36: 893–906CrossRefPubMedGoogle Scholar
  5. 5.
    Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: Theory, procedure and normal values. J Clin Invest 27: 476–483CrossRefGoogle Scholar
  6. 6.
    Meier P, Zierler KL (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6: 731–744PubMedGoogle Scholar
  7. 7.
    Wintermark M, Fischbein NJ, Smith WS, Ko NU, Quist M, Dillon WP (2005) Accuracy of dynamic perfusion CT with deconvolution in detecting acute hemispheric stroke. AJNR Am J Neuroradiol 26: 104–112PubMedGoogle Scholar
  8. 8.
    Warach S, Gaa J, Siewert B, Wielopolski P, Edelman RR (1995) Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging. Ann Neurol 37: 231–241CrossRefPubMedGoogle Scholar
  9. 9.
    Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci USA 89: 212–216CrossRefPubMedGoogle Scholar
  10. 10.
    Ogawa S, Menon RS, Tank DW, et al (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 64: 803–812CrossRefPubMedGoogle Scholar
  11. 11.
    Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8: 700–711CrossRefPubMedGoogle Scholar
  12. 12.
    Greicius MD, Supekar K, Menon V, Dougherty RF (2009) Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 19: 72–78CrossRefPubMedGoogle Scholar
  13. 13.
    Coleman MR, Rodd JM, Davis MH, et al (2007) Do vegetative patients retain aspects of language comprehension? Evidence from fMRI. Brain 130: 2494–2507CrossRefPubMedGoogle Scholar
  14. 14.
    Stiell IG, Lesiuk H, Wells GA, et al (2001) The Canadian CT Head Rule Study for patients with minor head injury: rationale, objectives, and methodology for phase I (derivation). Ann Emerg Med 38: 160–169CrossRefPubMedGoogle Scholar
  15. 15.
    Haydel MJ, Preston CA, Mills TJ, Luber S, Blaudeau E, DeBlieux PM (2000) Indications for computed tomography in patients with minor head injury. N Engl J Med 343: 100–105CrossRefPubMedGoogle Scholar
  16. 16.
    Yates D, Aktar R, Hill J (2007) Assessment, investigation, and early management of head injury: summary of NICE guidance. BMJ 335: 719–720CrossRefPubMedGoogle Scholar
  17. 17.
    Tong KA, Ashwal S, Holshouser BA, et al (2004) Diffuse axonal injury in children: clinical correlation with hemorrhagic lesions. Ann Neurol 56: 36–50CrossRefPubMedGoogle Scholar
  18. 18.
    Liu AY, Maldjian JA, Bagley LJ, Sinson GP, Grossman RI (1999) Traumatic brain injury: diffusion-weighted MR imaging findings. AJNR Am J Neuroradiol 20: 1636–1641PubMedGoogle Scholar
  19. 19.
    Sidaros A, Engberg AW, Sidaros K, et al (2008) Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: a longitudinal study. Brain 131: 559–572CrossRefPubMedGoogle Scholar
  20. 20.
    Schroder ML, Muizelaar JP, Bullock MR, Salvant JB, Povlishock JT (1995) Focal ischemia due to traumatic contusions documented by stable xenon-CT and ultrastructural studies. J Neurosurg 82: 966–971CrossRefPubMedGoogle Scholar
  21. 21.
    Inoue Y, Shiozaki T, Tasaki O, et al (2005) Changes in cerebral blood flow from the acute to the chronic phase of severe head injury. J Neurotrauma 22: 1411–1418CrossRefPubMedGoogle Scholar
  22. 22.
    Lewine JD, Davis JT, Bigler ED, et al (2007) Objective documentation of traumatic brain injury subsequent to mild head trauma: multimodal brain imaging with MEG, SPECT, and MRI. J Head Trauma Rehabil 22: 141–155CrossRefPubMedGoogle Scholar
  23. 23.
    Coles JP, Fryer TD, Smielewski P, et al (2004) Incidence and mechanisms of cerebral ischemia in early clinical head injury. J Cereb Blood Flow Metab 24: 202–211CrossRefPubMedGoogle Scholar
  24. 24.
    Schiff ND, Ribary U, Moreno DR, et al (2002) Residual cerebral activity and behavioural fragments can remain in the persistently vegetative brain. Brain 125: 1210–1234CrossRefPubMedGoogle Scholar
  25. 25.
    Soustiel JF, Mahamid E, Goldsher D, Zaaroor M (2008) Perfusion-CT for early assessment of traumatic cerebral contusions. Neuroradiology 50: 189–196CrossRefPubMedGoogle Scholar
  26. 26.
    Hemphill JC3rd, Smith WS, Sonne DC, Morabito D, Manley GT (2005) Relationship between brain tissue oxygen tension and CT perfusion: feasibility and initial results. AJNR Am J Neuroradiol 26: 1095–1100PubMedGoogle Scholar
  27. 27.
    Friedman SD, Brooks WM, Jung RE, et al (1999) Quantitative proton MRS predicts outcome after traumatic brain injury. Neurology 52: 1384–1391PubMedGoogle Scholar
  28. 28.
    Newsome MR, Scheibel RS, Steinberg JL, et al (2007) Working memory brain activation following severe traumatic brain injury. Cortex 43: 95–111CrossRefPubMedGoogle Scholar
  29. 29.
    Morgenstern LB, Luna-Gonzales H, Huber JCJr, et al (1998) Worst headache and subarachnoid hemorrhage: prospective, modern computed tomography and spinal fluid analysis. Ann Emerg Med 32: 297–304PubMedGoogle Scholar
  30. 30.
    Kassell NF, Torner JC (1984) The International Cooperative Study on Timing of Aneurysm Surgery — an update. Stroke 15: 566–570PubMedGoogle Scholar
  31. 31.
    Kallmes DF, Layton K, Marx WF, Tong F (2007) Death by nondiagnosis: why emergent CT angiography should not be done for patients with subarachnoid hemorrhage. AJNR Am J Neuroradiol 28: 1837–1838CrossRefPubMedGoogle Scholar
  32. 32.
    Leclerc X, Fichten A, Gauvrit JY, et al (2002) Symptomatic vasospasm after subarachnoid haemorrhage: assessment of brain damage by diffusion and perfusion-weighted MRI and single-photon emission computed tomography. Neuroradiology 44: 610–616CrossRefPubMedGoogle Scholar
  33. 33.
    Carpenter DA, Grubb RLJr, Tempel LW, Powers WJ (1991) Cerebral oxygen metabolism after aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab 11: 837–844PubMedGoogle Scholar
  34. 34.
    Wintermark M, Ko NU, Smith WS, Liu S, Higashida RT, Dillon WP (2006) Vasospasm after subarachnoid hemorrhage: utility of perfusion CT and CT angiography on diagnosis and management. AJNR Am J Neuroradiol 27: 26–34PubMedGoogle Scholar
  35. 35.
    Condette-Auliac S, Bracard S, Anxionnat R, et al (2001) Vasospasm after subarachnoid hemorrhage: interest in diffusion-weighted MR imaging. Stroke 32: 1818–1824PubMedGoogle Scholar
  36. 36.
    Handa Y, Kaneko M, Matuda T, Kobayashi H, Kubota T (1997) In vivo proton magnetic resonance spectroscopy for metabolic changes in brain during chronic cerebral vasospasm in primates. Neurosurgery 40: 773–780CrossRefPubMedGoogle Scholar
  37. 37.
    Brooke NS, Ouwerkerk R, Adams CB, Radda GK, Ledingham JG, Rajagopalan B (1994) Phosphorus-31 magnetic resonance spectra reveal prolonged intracellular acidosis in the brain following subarachnoid hemorrhage. Proc Natl Acad Sci USA 91: 1903–1907CrossRefPubMedGoogle Scholar
  38. 38.
    Rowe J, Blamire AM, Domingo Z, et al (1998) Discrepancies between cerebral perfusion and metabolism after subarachnoid haemorrhage: a magnetic resonance approach. J Neurol Neurosurg Psychiatry 64: 98–103CrossRefPubMedGoogle Scholar
  39. 39.
    Weiss N, Galanaud D, Carpentier A, Naccache L, Puybasset L (2007) Clinical review: Prognostic value of magnetic resonance imaging in acute brain injury and coma. Crit Care 11: 230CrossRefPubMedGoogle Scholar
  40. 40.
    Edgren E, Enblad P, Grenvik A, et al (2003) Cerebral blood flow and metabolism after cardiopulmonary resuscitation. A pathophysiologic and prognostic positron emission tomography pilot study. Resuscitation 57: 161–170CrossRefPubMedGoogle Scholar
  41. 41.
    Rupright J, Woods EA, Singh A (1996) Hypoxic brain injury: evaluation by single photon emission computed tomography. Arch Phys Med Rehabil 77: 1205–1208CrossRefPubMedGoogle Scholar
  42. 42.
    Pollock JM, Whitlow CT, Deibler AR, et al (2008) Anoxic injury-associated cerebral hyperperfusion identified with arterial spin-labeled MR imaging. AJNR Am J Neuroradiol 29: 1302–1307CrossRefPubMedGoogle Scholar
  43. 43.
    Wartenberg KE, Patsalides A, Yepes MS (2004) Is magnetic resonance spectroscopy superior to conventional diagnostic tools in hypoxic-ischemic encephalopathy? J Neuroimaging 14: 180–186PubMedGoogle Scholar
  44. 44.
    Rovira A, Cordoba J, Sanpedro F, Grive E, Rovira-Gols A, Alonso J (2002) Normalization of T2 signal abnormalities in hemispheric white matter with liver transplant. Neurology 59: 335–341PubMedGoogle Scholar
  45. 45.
    Lodi R, Tonon C, Stracciari A, et al (2004) Diffusion MRI shows increased water apparent diffusion coefficient in the brains of cirrhotics. Neurology 62: 762–766PubMedGoogle Scholar
  46. 46.
    Kale RA, Gupta RK, Saraswat VA, et al (2006) Demonstration of interstitial cerebral edema with diffusion tensor MR imaging in type C hepatic encephalopathy. Hepatology 43: 698–706CrossRefPubMedGoogle Scholar
  47. 47.
    Munoz SJ, Robinson M, Northrup B, et al (1991) Elevated intracranial pressure and computed tomography of the brain in fulminant hepatocellular failure. Hepatology 13: 209–212CrossRefPubMedGoogle Scholar
  48. 48.
    Ranjan P, Mishra AM, Kale R, Saraswat VA, Gupta RK (2005) Cytotoxic edema is responsible for raised intracranial pressure in fulminant hepatic failure: in vivo demonstration using diffusion-weighted MRI in human subjects. Metab Brain Dis 20: 181–192CrossRefPubMedGoogle Scholar
  49. 49.
    Saraswat VA, Saksena S, Nath K, et al (2008) Evaluation of mannitol effect in patients with acute hepatic failure and acute-on-chronic liver failure using conventional MRI, diffusion tensor imaging and in-vivo proton MR spectroscopy. World J Gastroenterol 14: 4168–4178CrossRefPubMedGoogle Scholar
  50. 50.
    Lockwood AH (2002) Positron emission tomography in the study of hepatic encephalopathy. Metab Brain Dis 17: 431–435CrossRefPubMedGoogle Scholar
  51. 51.
    Lockwood AH, Yap EW, Rhoades HM, Wong WH (1991) Altered cerebral blood flow and glucose metabolism in patients with liver disease and minimal encephalopathy. J Cereb Blood Flow Metab 11: 331–336PubMedGoogle Scholar
  52. 52.
    Lockwood AH, McDonald JM, Reiman RE, et al (1979) The dynamics of ammonia metabolism in man. Effects of liver disease and hyperammonemia. J Clin Invest 63: 449–460CrossRefPubMedGoogle Scholar
  53. 53.
    Cagnin A, Taylor-Robinson SD, Forton DM, Banati RB (2006) In vivo imaging of cerebral “peripheral benzodiazepine binding sites” in patients with hepatic encephalopathy. Gut 55: 547–553CrossRefPubMedGoogle Scholar
  54. 54.
    Catafau AM, Kulisevsky J, Berna L, et al (2000) Relationship between cerebral perfusion in frontal-limbic-basal ganglia circuits and neuropsychologic impairment in patients with subclinical hepatic encephalopathy. J Nucl Med 41: 405–410PubMedGoogle Scholar
  55. 55.
    Naegele T, Grodd W, Viebahn R, et al (2000) MR imaging and (1) H spectroscopy of brain metabolites in hepatic encephalopathy: time-course of renormalization after liver transplantation. Radiology 216: 683–691PubMedGoogle Scholar
  56. 56.
    Kanamori K, Ross BD (2006) Kinetics of glial glutamine efflux and the mechanism of neuronal uptake studied in vivo in mildly hyperammonemic rat brain. J Neurochem 99: 1103–1113CrossRefPubMedGoogle Scholar
  57. 57.
    Zhang LJ, Yang G, Yin J, Liu Y, Qi J (2007) Abnormal default-mode network activation in cirrhotic patients: a functional magnetic resonance imaging study. Acta Radiol 48: 781–787CrossRefPubMedGoogle Scholar
  58. 58.
    Jackson AC, Gilbert JJ, Young GB, Bolton CF (1985) The encephalopathy of sepsis. Can J Neurol Sci 12: 303–307PubMedGoogle Scholar
  59. 59.
    Finelli PF, Uphoff DF (2004) Magnetic resonance imaging abnormalities with septic encephalopathy. J Neurol Neurosurg Psychiatry 75: 1189–1191CrossRefPubMedGoogle Scholar
  60. 60.
    Sharshar T, Carlier R, Bernard F, et al (2007) Brain lesions in septic shock: a magnetic resonance imaging study. Intensive Care Med 33: 798–806CrossRefPubMedGoogle Scholar
  61. 61.
    Bartynski WS, Boardman JF, Zeigler ZR, Shadduck RK, Lister J (2006) Posterior reversible encephalopathy syndrome in infection, sepsis, and shock. AJNR Am J Neuroradiol 27: 2179–2190PubMedGoogle Scholar
  62. 62.
    Hotchkiss RS, Long RC, Hall JR, et al (1989) An in vivo examination of rat brain during sepsis with 31P-NMR spectroscopy. Am J Physiol 257:C1055–1061PubMedGoogle Scholar
  63. 63.
    Kampfl A, Franz G, Aichner F, et al (1998) The persistent vegetative state after closed head injury: clinical and magnetic resonance imaging findings in 42 patients. J Neurosurg 88: 809–816CrossRefPubMedGoogle Scholar
  64. 64.
    Paterakis K, Karantanas AH, Komnos A, Volikas Z (2000) Outcome of patients with diffuse axonal injury: the significance and prognostic value of MRI in the acute phase. J Trauma 49: 1071–1075CrossRefPubMedGoogle Scholar
  65. 65.
    Garnett MR, Blamire AM, Corkill RG, Cadoux-Hudson TA, Rajagopalan B, Styles P (2000) Early proton magnetic resonance spectroscopy in normal-appearing brain correlates with outcome in patients following traumatic brain injury. Brain 123: 2046–2054CrossRefPubMedGoogle Scholar
  66. 66.
    Weiss N, Galanaud D, Carpentier A, et al (2008) A combined clinical and MRI approach for outcome assessment of traumatic head injured comatose patients. J Neurol 255: 217–223CrossRefPubMedGoogle Scholar
  67. 67.
    Oder W, Goldenberg G, Podreka I, Deecke L (1991) HM-PAO-SPECT in persistent vegetative state after head injury: prognostic indicator of the likelihood of recovery? Intensive Care Med 17: 149–153CrossRefPubMedGoogle Scholar
  68. 68.
    Bavetta S, Nimmon CC, White J, et al (1994) A prospective study comparing SPET with MRI and CT as prognostic indicators following severe closed head injury. Nucl Med Commun 15: 961–968PubMedGoogle Scholar
  69. 69.
    Shiina G, Onuma T, Kameyama M, et al (1998) Sequential assessment of cerebral blood flow in diffuse brain injury by 123I-iodoamphetamine single-photon emission CT. AJNR Am J Neuroradiol 19: 297–302PubMedGoogle Scholar
  70. 70.
    Ritter AM, Muizelaar JP, Barnes T, et al (1999) Brain stem blood flow, pupillary response, and outcome in patients with severe head injuries. Neurosurgery 44: 941–948CrossRefPubMedGoogle Scholar
  71. 71.
    Roine RO, Raininko R, Erkinjuntti T, Ylikoski A, Kaste M (1993) Magnetic resonance imaging findings associated with cardiac arrest. Stroke 24: 1005–1014PubMedGoogle Scholar
  72. 72.
    Wijdicks EF, Campeau NG, Miller GM (2001) MR imaging in comatose survivors of cardiac resuscitation. AJNR Am J Neuroradiol 22: 1561–1565PubMedGoogle Scholar
  73. 73.
    Nogami K, Fujii M, Kashiwagi S, Sadamitsu D, Maekawa T (2000) Cerebral circulation and prognosis of the patients with hypoxic encephalopathy. Keio J Med 49 (Suppl 1): A109–111PubMedGoogle Scholar
  74. 74.
    Cohan SL, Mun SK, Petite J, et al (1989) Cerebral blood flow in humans following resuscitation from cardiac arrest. Stroke 20: 761–765PubMedGoogle Scholar
  75. 75.
    Berek K, Lechleitner P, Luef G, et al (1995) Early determination of neurological outcome after prehospital cardiopulmonary resuscitation. Stroke 26: 543–549PubMedGoogle Scholar
  76. 76.
    Wijdicks EF, Hijdra A, Young GB, Bassetti CL, Wiebe S (2006) Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 67: 203–210CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • R. D. Stevens
    • 1
  • A. Pustavoitau
    • 2
  • P. van Zijl
    • 3
  1. 1.Division of Neurosciences Critical Care Departments of Anesthesiology, Critical Care Medicine, Neurology and NeurosurgeryJohns Hopkins HospitalBaltimoreUSA
  2. 2.Departments of Anesthesiology and Critical CareJohns Hopkins HospitalBaltimoreUSA
  3. 3.Department of RadiologyJohn Hopkins HospitalBaltimoreUSA

Personalised recommendations