Skip to main content

Measurement of Carbon Monoxide: From Bench to Bedside

  • Conference paper
Intensive Care Medicine
  • 1343 Accesses

Abstract

Carbon monoxide is produced endogenously by the class of enzymes known collectively as heme oxygenase (HO) [1]. The inducible form of HO, HO-1, has been reported to have cytoprotective and anti-oxidant activities [1]. In addition, other studies have suggested that endogenously generated carbon monoxide has protective and beneficial effects on a vast array of responses against multiple organ injury, inflammation, apoptosis, cell proliferation, vasoconstriction and systemic and pulmonary hypertension [25]. The initial evidence supporting a beneficial action of carbon monoxide originated from studies on lung injury in animals [6] and was reproduced later in other tissues, including the heart, liver, kidney, intestine and the reticulo-endothelial system [2, 7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maines MD (1997) The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37: 517–554

    Article  CAS  PubMed  Google Scholar 

  2. Kim HP, Ryter SW, Choi AM (2006) CO as a cellular signaling molecule. Annu Rev Pharmacol Toxicol 46: 411–449

    Article  CAS  PubMed  Google Scholar 

  3. Ryter SW, Morse D, Choi AM (2004) Carbon monoxide: to boldly go where NO has gone before. Sci STKE 2004: RE6

    Article  PubMed  Google Scholar 

  4. Otterbein LE, Bach FH, Alam J, et al (2000) Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 6: 422–428

    Article  CAS  PubMed  Google Scholar 

  5. Zuckerbraun BS, Chin BY, Wegiel B, et al (2006) Carbon monoxide reverses established pulmonary hypertension. J Exp Med 203: 2109–2119

    Article  CAS  PubMed  Google Scholar 

  6. Otterbein LE, Mantell LL, Choi AM (1999) Carbon monoxide provides protection against hyperoxic lung injury. Am J Physiol 276: L688–L694

    CAS  PubMed  Google Scholar 

  7. Ryter SW, Alam J, Choi AM (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86: 583–650

    Article  CAS  PubMed  Google Scholar 

  8. Vreman HJ, Baxter LM, Stone RT, Stevenson DK (1996) Evaluation of a fully automated end-tidal carbon monoxide instrument for breath analysis. Clin Chem 42: 50–56

    CAS  PubMed  Google Scholar 

  9. Horvath I, Donnelly LE, Kiss A, Paredi P, Kharitonov SA, Barnes PJ (1998) Raised levels of exhaled carbon monoxide are associated with an increased expression of heme oxygenase-1 in airway macrophages in asthma: a new marker of oxidative stress. Thorax 53: 668–672

    Article  CAS  PubMed  Google Scholar 

  10. Ramirez M, Garcia-Rio F, Vinas A, Prados C, Pino JM, Villamor J (2004) Relationship between exhaled carbon monoxide and airway hyperresponsiveness in asthmatic patients. J Asthma 41: 109–116

    Article  PubMed  Google Scholar 

  11. Zegdi R, Caid R, Van De Louw A, et al (2000) Exhaled carbon monoxide in mechanically ventilated critically ill patients: influence of inspired oxygen fraction. Intensive Care Med 26: 1228–1231

    Article  CAS  PubMed  Google Scholar 

  12. Togores B, Bosch M, Agusti AG (2000) The measurement of exhaled carbon monoxide is influenced by airflow obstruction. Eur Respir J 15: 177–180

    Article  CAS  PubMed  Google Scholar 

  13. Yamaya M, Sekizawa K, Ishizuka S, Monma M, Mizuta K, Sasaki H (1998) Increased carbon monoxide in exhaled air of subjects with upper respiratory tract infections. Am J Respir Crit Care Med 158: 311–314

    CAS  PubMed  Google Scholar 

  14. Yasuda H, Yamaya M, Yanai M, Ohrui T, Sasaki H (2002) Increased blood carboxyhaemoglobin concentrations in inflammatory pulmonary diseases. Thorax 57: 779–783

    Article  CAS  PubMed  Google Scholar 

  15. Westphal M, Eletr D, Bone HG, et al (2002) Arteriovenous carboxyhemoglobin difference in critical illness: fiction or fact? Biochem Biophys Res Commun 299: 479–482

    Article  CAS  PubMed  Google Scholar 

  16. Singer P, Hansen H (1988) Suppression of fetal hemoglobin and bilirubin on oximetry measurement. Blood Gas News 8: 12–17

    Google Scholar 

  17. Maines MD, Gibbs PE (2005) 30 some years of heme oxygenase: from a “molecular wrecking Ball” to a “mesmerizing” trigger of cellular events. Biochem Biophys Res Commun 338: 568–577

    Article  CAS  PubMed  Google Scholar 

  18. Vincent JL, Sakr Y, Sprung CL, et al (2006) Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 34: 344–353

    Article  PubMed  Google Scholar 

  19. Salvemini D, Cuzzocrea S (2002) Oxidative stress in septic shock and disseminated intravascular coagulation. Free Radic Biol Med 33: 1173–1185

    Article  CAS  PubMed  Google Scholar 

  20. Fujii H, Takahashi T, Nakahira K, et al (2003) Protective role of heme oxygenase-1 in the intestinal tissue injury in an experimental model of sepsis. Crit Care Med 31: 893–902

    Article  CAS  PubMed  Google Scholar 

  21. Morimatsu H, Takahashi T, Maeshima K, et al (2006) Increased heme catabolism in critically ill patients: correlation among exhaled carbon monoxide, arterial carboxyhemoglobin, and serum bilirubin IXalpha concentrations. Am J Physiol Lung Cell Mol Physiol 290: L114–L119

    Article  CAS  PubMed  Google Scholar 

  22. Wiesel P, Patel AP, DiFonzo N, et al (2000) Endotoxin-induced mortality is related to increased oxidative stress and end-organ dysfunction, not refractory hypotension, in heme oxygenase-1-deficient mice. Circulation 102: 3015–3022

    CAS  PubMed  Google Scholar 

  23. Ryter SW, Otterbein LE (2004) Carbon monoxide in biology and medicine. Bioessays 26: 270–280

    Article  CAS  PubMed  Google Scholar 

  24. Wu L, Cao K, Lu Y, Wang R (2002) Different mechanisms underlying the stimulation of K(Ca) channels by nitric oxide and carbon monoxide. J Clin Invest 110: 691–700

    CAS  PubMed  Google Scholar 

  25. Dubuis E, Potier M, Wang R, Vandier C (2005) Continuous inhalation of carbon monoxide attenuates hypoxic pulmonary hypertension development presumably through activation of BKCa channels. Cardiovasc Res 65: 751–761

    Article  CAS  PubMed  Google Scholar 

  26. Scharte M, von Ostrowski TA, Daudel F, Freise H, Van Aken H, Bone HG (2006) Endogenous carbon monoxide production correlates weakly with severity of acute illness. Eur J Anaesthesiol 23: 117–122

    Article  CAS  PubMed  Google Scholar 

  27. Scharte M, Bone HG, Van Aken H, Meyer J (2000) Increased carbon monoxide in exhaled air of critically ill patients. Biochem Biophys Res Commun 267: 423–426

    Article  CAS  PubMed  Google Scholar 

  28. Zegdi R, Perrin D, Burdin M, Boiteau R, Tenaillon A (2002) Increased endogenous carbon monoxide production in severe sepsis. Intensive Care Med 28: 793–796

    Article  PubMed  Google Scholar 

  29. Meyer J, Prien T, Van Aken H, et al (1998) Arterio-venous carboxyhemoglobin difference suggests carbon monoxide production by human lungs. Biochem Biophys Res Commun 244: 230–232

    Article  CAS  PubMed  Google Scholar 

  30. Moncure M, Brathwaite CE, Samaha E, Marburger R, Ross SE (1999) Carboxyhemoglobin elevation in trauma victims. J Trauma 46: 424–427

    Article  CAS  PubMed  Google Scholar 

  31. Shi Y, Pan F, Li H, et al (2000) Plasma carbon monoxide levels in term newborn infants with sepsis. Biol Neonate 78: 230–232

    Article  CAS  PubMed  Google Scholar 

  32. Shi Y, Pan F, Li H, et al (2003) Carbon monoxide concentrations in paediatric sepsis syndrome. Arch Dis Child 88: 889–890

    Article  CAS  PubMed  Google Scholar 

  33. Melley DD, Finney SJ, Elia A, Lagan AL, Quinlan GJ, Evans TW (2007) Arterial carboxyhemoglobin level and outcome in critically ill patients. Crit Care Med 35: 1882–1887

    Article  CAS  PubMed  Google Scholar 

  34. Hunter K, Mascia M, Eudaric P, Simpkins C (1994) Evidence that carbon monoxide is a mediator of critical illness. Cell Mol Biol (Noisy-le-grand) 40: 507–510

    CAS  Google Scholar 

  35. Sedlacek M, Halpern NA, Uribarri J (1999) Carboxyhemoglobin and lactate levels do not correlate in critically ill patients. Am J Ther 6: 241–244

    Article  CAS  PubMed  Google Scholar 

  36. Eletr D, Reich A, Stubbe HD, et al (2004) Arteriovenous carboxyhemoglobin difference is not correlated to TNF-alpha, IL-6, PCT, CRP and leukocytes in critically ill patients. Clin Chim Acta 349: 75–80

    Article  CAS  PubMed  Google Scholar 

  37. Camhi SL, Alam J, Otterbein L, Sylvester SL, Choi AM (1995) Induction of heme oxygenase-1 gene expression by lipopolysaccharide is mediated by AP-1 activation. Am J Respir Cell Mol Biol 13: 387–398

    CAS  PubMed  Google Scholar 

  38. Kim YM, Bergonia HA, Muller C, Pitt BR, Watkins WD, Lancaster JR, Jr. (1995) Loss and degradation of enzyme-bound heme induced by cellular nitric oxide synthesis. J Biol Chem 270: 5710–5713

    Article  CAS  PubMed  Google Scholar 

  39. Lavrovsky Y, Drummond GS, Abraham NG (1996) Downregulation of the human heme oxygenase gene by glucocorticoids and identification of 56b regulatory elements. Biochem Biophys Res Commun 218: 759–765

    Article  CAS  PubMed  Google Scholar 

  40. Stockley RA (1995) Role of inflammation in respiratory tract infections. Am J Med 99: 8S–13S

    Article  CAS  PubMed  Google Scholar 

  41. Chabot F, Mitchell JA, Gutteridge JM, Evans TW (1998) Reactive oxygen species in acute lung injury. Eur Respir J 11: 745–757

    CAS  PubMed  Google Scholar 

  42. Kovacs EJ, DiPietro LA (1994) Fibrogenic cytokines and connective tissue production. FASEB J 8: 854–861

    CAS  PubMed  Google Scholar 

  43. Goldstein RH, Fine A (1995) Potential therapeutic initiatives for fibrogenic lung diseases. Chest 108: 848–855

    Article  CAS  PubMed  Google Scholar 

  44. Paredi P, Kharitonov SA, Loukides S, Pantelidis P, du Bois RM, Barnes PJ (1999) Exhaled nitric oxide is increased in active fibrosing alveolitis. Chest 115: 1352–1356

    Article  CAS  PubMed  Google Scholar 

  45. Yamada N, Yamaya M, Okinaga S, et al (2000) Microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with susceptibility to emphysema. Am J Hum Genet 66: 187–195

    Article  CAS  PubMed  Google Scholar 

  46. Nathan C, Xie QW (1994) Regulation of biosynthesis of nitric oxide. J Biol Chem 269: 13725–13728

    CAS  PubMed  Google Scholar 

  47. Zayasu K, Sekizawa K, Okinaga S, Yamaya M, Ohrui T, Sasaki H (1997) Increased carbon monoxide in exhaled air of asthmatic patients. Am J Respir Crit Care Med 156: 1140–1143

    CAS  PubMed  Google Scholar 

  48. Zanconato S, Scollo M, Zaramella C, Landi L, Zacchello F, Baraldi E (2002) Exhaled carbon monoxide levels after a course of oral prednisone in children with asthma exacerbation. J Allergy Clin Immunol 109: 440–445

    Article  CAS  PubMed  Google Scholar 

  49. Yamaya M, Sekizawa K, Ishizuka S, Monma M, Sasaki H (1999) Exhaled carbon monoxide levels during treatment of acute asthma. Eur Respir J 13: 757–760

    Article  CAS  PubMed  Google Scholar 

  50. Yasuda H, Yamaya M, Nakayama K, et al (2005) Increased arterial carboxyhemoglobin concentrations in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 171: 1246–1251

    Article  PubMed  Google Scholar 

  51. Horvath I, Loukides S, Wodehouse T, Kharitonov SA, Cole PJ, Barnes PJ (1998) Increased levels of exhaled carbon monoxide in bronchiectasis: a new marker of oxidative stress. Thorax 53: 867–870

    Article  CAS  PubMed  Google Scholar 

  52. Yasuda H, Ebihara S, Yamaya M, Mashito Y, Nakamura M, Sasaki H (2004) Increased arterial carboxyhemoglobin concentrations in elderly patients with silicosis. J Am Geriatr Soc 52: 1403–1404

    Article  PubMed  Google Scholar 

  53. Paredi P, Shah PL, Montuschi P, et al (1999) Increased carbon monoxide in exhaled air of patients with cystic fibrosis. Thorax 54: 917–920

    Article  CAS  PubMed  Google Scholar 

  54. May C, Patel S, Peacock J, Milner A, Rafferty GF, Greenough A (2007) End-tidal carbon monoxide levels in prematurely born infants developing bronchopulmonary dysplasia. Pediatr Res 61: 474–478

    Article  PubMed  Google Scholar 

  55. Yamaya M, Hosoda M, Ishizuka S, et al (2001) Relation between exhaled carbon monoxide levels and clinical severity of asthma. Clin Exp Allergy 31: 417–422

    Article  CAS  PubMed  Google Scholar 

  56. Kong PM, Chan CC, Lee P, Wang YT (2002) An assessment of the role of exhaled carbon monoxide in acute asthmatic exacerbations in hospitalised patients. Singapore Med J 43: 399–402

    CAS  PubMed  Google Scholar 

  57. Biernacki WA, Kharitonov SA, Barnes PJ (2001) Exhaled carbon monoxide in patients with lower respiratory tract infection. Respir Med 95: 1003–1005

    Article  CAS  PubMed  Google Scholar 

  58. Bartlett JG, Mundy LM (1995) Community-acquired pneumonia. N Engl J Med 333: 1618–1624

    Article  CAS  PubMed  Google Scholar 

  59. Antuni JD, Kharitonov SA, Hughes D, Hodson ME, Barnes PJ (2000) Increase in exhaled carbon monoxide during exacerbations of cystic fibrosis. Thorax 55: 138–142

    Article  CAS  PubMed  Google Scholar 

  60. Mayr FB, Spiel A, Leitner J, et al (2005) Effects of carbon monoxide inhalation during experimental endotoxemia in humans. Am J Respir Crit Care Med 171: 354–360

    Article  PubMed  Google Scholar 

  61. Sakamoto A, Nakanishi K, Takeda S, Ogawa R (2005) Does carboxy-hemoglobin serve as a stress-induced inflammatory marker reflecting surgical insults? J Nippon Med Sch 72: 19–28

    Article  CAS  PubMed  Google Scholar 

  62. Leikin JB, Vogel S (1986) Carbon monoxide levels in cardiac patients in an urban emergency department. Am J Emerg Med 4: 126–128

    Article  CAS  PubMed  Google Scholar 

  63. Ohara Y, Ohrui T, Morikawa T, et al (2006) Exhaled carbon monoxide levels in school-age children with episodic asthma. Pediatr Pulmonol 41: 470–474

    Article  Google Scholar 

  64. Pearson P, Lewis S, Britton J, Fogarty A (2005) Exhaled carbon monoxide levels in atopic asthma: a longitudinal study. Respir Med 99: 1292–1296

    Article  PubMed  Google Scholar 

  65. Beck-Ripp J, Latzin P, Griese M (2004) Exhaled carbon monoxide is not flow dependent in children with cystic fibrosis and asthma. Eur J Med Res 9: 518–522

    CAS  PubMed  Google Scholar 

  66. Yasuda H, Sasaki T, Yamaya M, et al (2004) Increased arteriovenous carboxyhemoglobin differences in patients with inflammatory pulmonary diseases. Chest 125: 2160–2168

    Article  PubMed  Google Scholar 

  67. Zetterquist W, Marteus H, Johannesson M, et al (2002) Exhaled carbon monoxide is not elevated in patients with asthma or cystic fibrosis. Eur Respir J 20: 92–99

    Article  CAS  PubMed  Google Scholar 

  68. Khatri SB, Ozkan M, McCarthy K, et al (2001) Alterations in exhaled gas profile during allergen-induced asthmatic response. Am J Respir Crit Care Med 164: 1844–1848

    CAS  PubMed  Google Scholar 

  69. Uasuf CG, Jatakanon A, James A, Kharitonov SA, Wilson NM, Barnes PJ (1999) Exhaled carbon monoxide in childhood asthma. J Pediatr 135: 569–574

    Article  CAS  PubMed  Google Scholar 

  70. Hampson NB (2007) Carboxyhemoglobin elevation due to hemolytic anemia. J Emerg Med 33: 17–19

    Article  PubMed  Google Scholar 

  71. Sylvester KP, Patey RA, Rafferty GF, Rees D, Thein SL, Greenough A (2005) Exhaled carbon monoxide levels in children with sickle cell disease. Eur J Pediatr 164: 162–165

    Article  CAS  PubMed  Google Scholar 

  72. Ziemann-Gimmel P, Schwartz DE (2004) Increased carboxyhemoglobin in a patient with a large retroperitoneal hematoma. Anesth Analg 99: 1800–2, table

    Article  PubMed  Google Scholar 

  73. Sears DA, Udden MM, Thomas LJ (2001) Carboxyhemoglobin levels in patients with sickle-cell anemia: relationship to hemolytic and vasoocclusive severity. Am J Med Sci 322: 345–348

    Article  CAS  PubMed  Google Scholar 

  74. Paredi P, Biernacki W, Invernizzi G, Kharitonov SA, Barnes PJ (1999) Exhaled carbon monoxide levels elevated in diabetes and correlated with glucose concentration in blood: a new test for monitoring the disease? Chest 116: 1007–1011

    Article  CAS  PubMed  Google Scholar 

  75. Thunedborg P, Nielsen AL, Brinkenfeldt H, Brahm J, Jensen HA (1995) Carbon monoxide in chronic uraemia related to erythropoietin treatment and smoking habits. Scand J Urol Nephrol 29: 21–25

    Article  CAS  PubMed  Google Scholar 

  76. Coburn RF, Williams WJ, Kahn SB (1966) Endogenous carbon monoxide production in patients with hemolytic anemia. J Clin Invest 45: 460–468

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Corrêa, F., Nacul, F.E., Sakr, Y. (2009). Measurement of Carbon Monoxide: From Bench to Bedside. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92278-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-92278-2_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-92277-5

  • Online ISBN: 978-0-387-92278-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics