Skip to main content

Corticosteroid Biology in Critical Illness: Modulatory Mechanisms and Clinical Implications

  • Conference paper
Intensive Care Medicine
  • 1342 Accesses

Abstract

In recent years there has been renewed interest in the use of steroids in sepsis and septic shock, focusing on lower doses and longer courses with the aim of supplementing a presumed under-activity of the hypothalamic-pituitary-adrenal (HPA) axis due to relative adrenal insufficiency or target tissue glucocorticoid resistance. An international task force of the American College of Critical Care Medicine recently published guidelines for the diagnosis and treatment of what they termed “critical illness-related corticosteroid insufficiency” [1]. This paper makes important recommendations regarding steroid therapy in sepsis and acute respiratory distress syndrome (ARDS). The authors also suggested biochemical definitions of relative adrenal insufficiency. A rational approach would be to use such definitions to make decisions regarding corticosteroid supplementation in critical illness. However, the authors concluded that the available literature provides no evidence to use such biochemical parameters as a basis for treating patients with supplemental steroids. This discordance, in large part, may arise from the fact that classical concepts of the HPA axis ignore many important nuances of glucocorticoid production, bioavailability and cellular action. The purpose of this chapter is to explore these nuances with particular focus on cellular and regional mechanisms of regulation of corticosteroid action, with specific reference to the context of critical illness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marik PE, Pastores SM, Annane D, et al (2008) Recommendations for the diagnosis and management of corticosteroid insufficiency in critically ill adult patients: consensus statements from an international task force by the American College of Critical Care Medicine. Crit Care Med 36: 1937–1949

    Article  CAS  PubMed  Google Scholar 

  2. Bornstein SR, Engeland WC, Ehrhart-Bornstein M, Herman JP (2008) Dissociation of ACTH and glucocorticoids. Trends Endocrinol Metab 19: 175–180

    Article  CAS  PubMed  Google Scholar 

  3. Perrot D, Bonneton A, Dechaud H, Motin J, Pugeat M (1993) Hypercortisolism in septic shock is not suppressible by dexamethasone infusion. Crit Care Med 21: 396–401

    Article  CAS  PubMed  Google Scholar 

  4. Pemberton PA, Stein PE, Pepys MB, Potter JM, Carrell RW (1988) Hormone binding globulins undergo serpin conformational change in inflammation. Nature 336: 257–258

    Article  CAS  PubMed  Google Scholar 

  5. Owen CA, Campbell MA, Sannes PL, Boukedes SS, Campbell EJ (1995) Cell surface-bound elastase and cathepsin G on human neutrophils: a novel, non-oxidative mechanism by which neutrophils focus and preserve catalytic activity of serine proteinases. J Cell Biol 131: 775–789

    Article  CAS  PubMed  Google Scholar 

  6. Hammond GL, Smith CL, Underhill CM, Nguyen VT (1990) Interaction between corticosteroid binding globulin and activated leukocytes in vitro. Biochem Biophys Res Commun 172: 172–177

    Article  CAS  PubMed  Google Scholar 

  7. Jirasakuldech B, Schussler GC, Yap MG, Drew H, Josephson A, Michl J (2000) A characteristic serpin cleavage product of thyroxine-binding globulin appears in sepsis sera. J Clin Endocrinol Metab 85: 3996–3999

    Article  CAS  PubMed  Google Scholar 

  8. Vogeser M, Briegel J (2007) Effect of temperature on protein binding of cortisol. Clin Biochem 40: 724–727

    Article  CAS  PubMed  Google Scholar 

  9. Beishuizen A, Thijs LG, Vermes I (2001) Patterns of corticosteroid-binding globulin and the free cortisol index during septic shock and multitrauma. Intensive Care Med 27: 1584–1591

    Article  CAS  PubMed  Google Scholar 

  10. Cole TJ, Harris HJ, Hoong I, et al (1999) The glucocorticoid receptor is essential for maintaining basal and dexamethasone-induced repression of the murine corticosteroid-binding globulin gene. Mol Cell Endocrinol 154: 29–36

    Article  CAS  PubMed  Google Scholar 

  11. Marti O, Martin M, Gavalda A, et al (1997) Inhibition of corticosteroid-binding globulin caused by a severe stressor is apparently mediated by the adrenal but not by glucocorticoid receptors. Endocrine 6: 159–164

    Article  CAS  PubMed  Google Scholar 

  12. Vogeser M, Briegel J, Zachoval R (2002) Dialyzable free cortisol after stimulation with Synacthen. Clin Biochem 35: 539–543

    Article  CAS  PubMed  Google Scholar 

  13. Moisey R, Wright D, Aye M, Murphy E, Peacey SR (2006) Interpretation of the short Synacthen test in the presence of low cortisol-binding globulin: two case reports. Ann Clin Biochem 43: 416–419

    Article  PubMed  Google Scholar 

  14. Davidson JS, Bolland MJ, Croxson MS, Chiu W, Lewis JG (2006) A case of low cortisol-binding globulin: use of plasma free cortisol in interpretation of hypothalamic-pituitary-adrenal axis tests. Ann Clin Biochem 43: 237–239

    Article  CAS  PubMed  Google Scholar 

  15. Torpy DJ, Bachmann AW, Grice JE, et al (2001) Familial corticosteroid-binding globulin deficiency due to a novel null mutation: association with fatigue and relative hypotension. J Clin Endocrinol Metab 86: 3692–3700

    Article  CAS  PubMed  Google Scholar 

  16. Hamrahian AH, Oseni TS, Arafah BM (2004) Measurements of serum free cortisol in critically ill patients. N Engl J Med 350: 1629–1638

    Article  CAS  PubMed  Google Scholar 

  17. Ho JT, Al-Musalhi H, Chapman MJ, et al (2006) Septic shock and sepsis: a comparison of total and free plasma cortisol levels. J Clin Endocrinol Metab 91: 105–114

    Article  CAS  PubMed  Google Scholar 

  18. Dubey A, Boujoukos AJ (2005) Free cortisol levels should not be used to determine adrenal responsiveness. Crit Care 9: E2

    Article  Google Scholar 

  19. Coolens JL, Van Baelen H, Heyns W (1987) Clinical use of unbound plasma cortisol as calculated from total cortisol and corticosteroid-binding globulin. J Steroid Biochem 26: 197–202

    Article  CAS  PubMed  Google Scholar 

  20. Odermatt A, Atanasov AG, Balazs Z, et al (2006) Why is 11beta-hydroxysteroid dehydrogenase type 1 facing the endoplasmic reticulum lumen? Physiological relevance of the membrane topology of 11beta-HSD1. Mol Cell Endocrinol 248: 15–23

    Article  CAS  PubMed  Google Scholar 

  21. Prigent H, Maxime V, Annane D (2004) Science review: mechanisms of impaired adrenal function in sepsis and molecular actions of glucocorticoids. Crit Care 8: 243–252

    Article  PubMed  Google Scholar 

  22. Druce LA, Thorpe CM, Wilton A (2008) Mineralocorticoid effects due to cortisol inactivation overload explain the beneficial use of hydrocortisone in septic shock. Med Hypotheses 70: 56–60

    Article  CAS  PubMed  Google Scholar 

  23. Annane D, Sebille V, Charpentier C, et al (2002) Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 288: 862–871

    Article  CAS  PubMed  Google Scholar 

  24. Scheinman RI, Gualberto A, Jewell CM, Cidlowski JA, Baldwin ASJr (1995) Characterization of mechanisms involved in transrepression of NF-kappa B by activated glucocorticoid receptors. Mol Cell Biol 15: 943–953

    CAS  PubMed  Google Scholar 

  25. Meduri GU (1999) New rationale for glucocorticoid treatment in septic shock. J Chemother 11: 541–550

    CAS  PubMed  Google Scholar 

  26. Kino T, Chrousos GP (2003) Tumor necrosis factor alpha receptor-and Fas-associated FLASH inhibit transcriptional activity of the glucocorticoid receptor by binding to and interfering with its interaction with p160 type nuclear receptor coactivators. J Biol Chem 278: 3023–3029

    Article  CAS  PubMed  Google Scholar 

  27. Meduri GU, Muthiah MP, Carratu P, Eltorky M, Chrousos GP (2005) Nuclear factor-kappaBand glucocorticoid receptor alpha-mediated mechanisms in the regulation of systemic and pulmonary inflammation during sepsis and acute respiratory distress syndrome. Evidence for inflammation-induced target tissue resistance to glucocorticoids. Neuroimmunomodulation 12: 321–338

    Article  PubMed  Google Scholar 

  28. Meduri GU, Tolley EA, Chrousos GP, Stentz F (2002) Prolonged methylprednisolone treatment suppresses systemic inflammation in patients with unresolving acute respiratory dis-tress syndrome: evidence for inadequate endogenous glucocorticoid secretion and inflammation-induced immune cell resistance to glucocorticoids. Am J Respir Crit Care Med 165: 983–991

    PubMed  Google Scholar 

  29. Nakamori Y, Ogura H, Koh T, et al (2005) The balance between expression of intranuclear NF-kappaB and glucocorticoid receptor in polymorphonuclear leukocytes in SIRS patients. J Trauma 59: 308–314

    Article  CAS  PubMed  Google Scholar 

  30. Leung DY, Hamid Q, Vottero A, et al (1997) Association of glucocorticoid insensitivity with increased expression of glucocorticoid receptor beta. J Exp Med 186: 1567–1574

    Article  CAS  PubMed  Google Scholar 

  31. van der Laan S, Meijer OC (2008) Pharmacology of glucocorticoids: beyond receptors. Eur J Pharmacol 585: 483–491

    Article  PubMed  Google Scholar 

  32. Sousa AR, Lane SJ, Soh C, Lee TH (1999) In vivo resistance to corticosteroids in bronchial asthma is associated with enhanced phosyphorylation of JUN N-terminal kinase and failure of prednisolone to inhibit JUN N-terminal kinase phosphorylation. J Allergy Clin Immunol 104: 565–574

    Article  CAS  PubMed  Google Scholar 

  33. Clark AR, Martins JR, Tchen CR (2008) Role of dual specificity phosphatases in biological responses to glucocorticoids. J Biol Chem 283: 25765–25769

    Article  CAS  PubMed  Google Scholar 

  34. Bertini R, Bianchi M, Ghezzi P (1988) Adrenalectomy sensitizes mice to the lethal effects of interleukin 1 and tumor necrosis factor. J Exp Med 167: 1708–1712

    Article  CAS  PubMed  Google Scholar 

  35. Reichardt HM, Umland T, Bauer A, Kretz O, Schutz G (2000) Mice with an increased glucocorticoid receptor gene dosage show enhanced resistance to stress and endotoxic shock. Mol Cell Biol 20: 9009–9017

    Article  CAS  PubMed  Google Scholar 

  36. Hawes AS, Rock CS, Keogh CV, Lowry SF, Calvano SE (1992) In vivo effects of the antiglucocorticoid RU 486 on glucocorticoid and cytokine responses to Escherichia coli endotoxin. Infect Immun 60: 2641–2647

    CAS  PubMed  Google Scholar 

  37. Fischer M, Bhatnagar J, Guarner J, et al (2005) Fatal toxic shock syndrome associated with Clostridium sordellii after medical abortion. N Engl J Med 353: 2352–2360

    Article  CAS  PubMed  Google Scholar 

  38. Miech RP (2005) Pathophysiology of mifepristone-induced septic shock due to Clostridium sordellii. Ann Pharmacother 39: 1483–1488

    Article  CAS  PubMed  Google Scholar 

  39. Sicard D, Chauvelot-Moachon L (2005) Comment: pathophysiology of mifepristone-induced septic shock due to Clostridium sordellii. Ann Pharmacother 39: 2142–2143

    PubMed  Google Scholar 

  40. Cohen AL, Bhatnagar J, Reagan S, et al (2007) Toxic shock associated with Clostridium sordellii and Clostridium perfringens after medical and spontaneous abortion. Obstet Gynecol 110: 1027–1033

    CAS  PubMed  Google Scholar 

  41. Duma D, Silva-Santos JE, Assreuy J (2004) Inhibition of glucocorticoid receptor binding by nitric oxide in endotoxemic rats. Crit Care Med 32: 2304–2310

    CAS  PubMed  Google Scholar 

  42. Da J, Chen L, Hedenstierna G (2007) Nitric oxide up-regulates the glucocorticoid receptor and blunts the inflammatory reaction in porcine endotoxin sepsis. Crit Care Med 35: 26–32

    Article  CAS  PubMed  Google Scholar 

  43. Quan N, Avitsur R, Stark JL, et al (2001) Social stress increases the susceptibility to endotoxic shock. J Neuroimmunol 115: 36–45

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Williams, M., Menon, D.K. (2009). Corticosteroid Biology in Critical Illness: Modulatory Mechanisms and Clinical Implications. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92278-2_68

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-92278-2_68

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-92277-5

  • Online ISBN: 978-0-387-92278-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics