Advertisement

Burn Causes Prolonged Insulin Resistance and Hyperglycemia

  • G. G. Gauglitz
  • M. G. Jeschke

Abstract

More than 500,000 burn injuries occur annually in the United States [1]. Although most of these burn injuries are minor, approximately 40,000 to 60,000 burn patients require admission to a hospital or major burn center for appropriate treatment [2]. Advances in therapeutic strategies, based on improved understanding of resuscitation, enhanced wound coverage, improved treatment of inhalation injury, more appropriate infection control, and better support of the hypermetabolic response to injury, have significantly improved the clinical outcome of this unique patient population over the past years [3]. However, severe burns remain a devastating injury affecting nearly every organ system and leading to significant morbidity and mortality [4]. One of the main contributors to adverse outcome of this patient population is the profound metabolic changes associated with insulin resistance and hyperglycemia [4].

Keywords

Insulin Resistance Unfold Protein Response Insulin Receptor Substrate Intensive Insulin Therapy Insulin Receptor Tyrosine Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    American Burn Association (2007) Guidelines for the operation of burn centers. J Burn Care Res 28: 134–141Google Scholar
  2. 2.
    Nguyen TT, Gilpin DA, Meyer NA, Herndon DN (1996) Current treatment of severely burned patients. Ann Surg 223: 14–25CrossRefPubMedGoogle Scholar
  3. 3.
    Herndon DN (2007) Total Burn Care. Saunders Elsevier, New YorkGoogle Scholar
  4. 4.
    Herndon DN, Tompkins RG (2004) Support of the metabolic response to burn injury. Lancet 363: 1895–1902CrossRefPubMedGoogle Scholar
  5. 5.
    Gauglitz GG, Herndon DN, Jeschke MG (2008) Insulin resistance postburn: Underlying mechanisms and current therapeutic strategies. J Burn Care Res 29: 683–694CrossRefPubMedGoogle Scholar
  6. 6.
    Gore DC, Chinkes D, Heggers J, Herndon DN, Wolf SE, Desai M (2001) Association of hyperglycemia with increased mortality after severe burn injury. J Trauma 51: 540–544CrossRefPubMedGoogle Scholar
  7. 7.
    Sheridan RL, (2001) A great constitutional disturbance. N Engl J Med 345: 1271–1272CrossRefPubMedGoogle Scholar
  8. 8.
    Wolfe RR (1981) Review: acute versus chronic response to burn injury. Circ Shock 8: 105–115PubMedGoogle Scholar
  9. 9.
    Cuthbertson DP, Angeles Valero Zanuy MA, Leon Sanz ML (2001) Post-shock metabolic response. Nutr Hosp 16: 175–182Google Scholar
  10. 10.
    Galster AD, Bier DM, Cryer PE, Monafo WW, (1984) Plasma palmitate turnover in subjects with thermal injury. J Trauma 24: 938–945CrossRefPubMedGoogle Scholar
  11. 11.
    Cree MG, Aarsland A, Herndon DN, Wolfe RR (2007) Role of fat metabolism in burn traumainduced skeletal muscle insulin resistance. Crit Care Med 35: 476–483CrossRefGoogle Scholar
  12. 12.
    Childs C, Heath DF, Little RA, Brotherston M (1990) Glucose metabolism in children during the first day after burn injury. Arch Emerg Med 7: 135–147PubMedGoogle Scholar
  13. 13.
    Hart DW, Wolf SE, Mlcak R, et al (2000) Persistence of muscle catabolism after severe burn. Surgery 128: 312–319CrossRefPubMedGoogle Scholar
  14. 14.
    Jeschke MG, Mlcak RP, Finnerty CC, et al (2007) Burn size determines the inflammatory and hypermetabolic response. Crit Care 11:90CrossRefGoogle Scholar
  15. 15.
    Norbury WB, Herndon DN (2007) Modulation of the hypermetabolic response after burn injury. In: Herndon DN (ed) Total Burn Care. Saunders Elsevier, New York, pp 420–433CrossRefGoogle Scholar
  16. 16.
    Khani S, Tayek JA (2001) Cortisol increases gluconeogenesis in humans: its role in the metabolic syndrome. Clin Sci (Lond) 101: 739–747CrossRefGoogle Scholar
  17. 17.
    Wolfe RR, Herndon DN, Jahoor F, Miyoshi H, Wolfe M (1987) Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med 317: 403–408PubMedGoogle Scholar
  18. 18.
    Gore DC, Jahoor F, Wolfe RR, Herndon DN (1993) Acute response of human muscle protein to catabolic hormones. Ann Surg 218: 679–684CrossRefPubMedGoogle Scholar
  19. 19.
    Wolfe RR, Durkot MJ, Allsop JR, Burke JF (1979) Glucose metabolism in severely burned patients. Metabolism 28: 1031–1039CrossRefPubMedGoogle Scholar
  20. 20.
    Cree MG, Zwetsloot JJ, Herndon DN, et al (2007) Insulin sensitivity and mitochondrial function are improved in children with burn injury during a randomized controlled trial of fenofibrate. Ann Surg 245: 214–221CrossRefPubMedGoogle Scholar
  21. 21.
    Robinson LE, van Soeren MH (2004) Insulin resistance and hyperglycemia in critical illness: role of insulin in glycemic control. AACN Clin Issues 15: 45–62PubMedCrossRefGoogle Scholar
  22. 22.
    Gustavson SM, Chu CA, Nishizawa M, et al (2003) Interaction of glucagon and epinephrine in the control of hepatic glucose production in the conscious dog. Am J Physiol Endocrinol Metab 284: 695–707Google Scholar
  23. 23.
    Lang CH, Dobrescu C, Bagby GJ (1992) Tumor necrosis factor impairs insulin action on peripheral glucose disposal and hepatic glucose output. Endocrinology 130: 43–52CrossRefPubMedGoogle Scholar
  24. 24.
    Baracos V, Rodemann HP, Dinarello CA, Goldberg AL (1983) Stimulation of muscle protein degradation and prostaglandin E2 release by leukocytic pyrogen (interleukin-1). A mechanism for the increased degradation of muscle proteins during fever. N Engl J Med 308: 553–558PubMedCrossRefGoogle Scholar
  25. 25.
    Jahoor F, Desai M, Herndon DN, Wolfe RR (1988) Dynamics of the protein metabolic response to burn injury. Metabolism 37: 330–337CrossRefPubMedGoogle Scholar
  26. 26.
    Hart DW, Wolf SE, Chinkes DL, et al (2000) Determinants of skeletal muscle catabolism after severe burn. Ann Surg 232: 455–465CrossRefPubMedGoogle Scholar
  27. 27.
    Pidcoke HF, Wade CE, Wolf SE (2007) Insulin and the burned patient. Crit Care Med 35: 524–530CrossRefGoogle Scholar
  28. 28.
    Jeschke MG, Klein D, Bolder U, Einspanier R (2004) Insulin attenuates the systemic inflammatory response in endotoxemic rats. Endocrinology 145: 4084–4093CrossRefPubMedGoogle Scholar
  29. 29.
    Jeschke MG, Klein D, Herndon DN (2004) Insulin treatment improves the systemic inflammatory reaction to severe trauma. Ann Surg 239: 553–560CrossRefPubMedGoogle Scholar
  30. 30.
    Pham TN, Warren AJ, Phan HH, Molitor F, Greenhalgh DG, Palmieri TL (2005) Impact of tight glycemic control in severely burned children. J Trauma 59: 1148–1154CrossRefPubMedGoogle Scholar
  31. 31.
    Hansen TK, Thiel S, Wouters PJ, Christiansen JS, Van den Berghe G (2003) Intensive insulin therapy exerts antiinflammatory effects in critically ill patients and counteracts the adverse effect of low mannose-binding lectin levels. J Clin Endocrinol Metab 88: 1082–1088CrossRefPubMedGoogle Scholar
  32. 32.
    Van den Berghe G, Wouters P, Weekers F, et al (2001) Intensive insulin therapy in the critically ill patients. N Engl J Med 345: 1359–1367CrossRefPubMedGoogle Scholar
  33. 33.
    Gore DC, Wolf SE, Herndon DN, Wolfe RR (2003) Metformin blunts stress-induced hyperglycemia after thermal injury. J Trauma 54: 555–561CrossRefPubMedGoogle Scholar
  34. 34.
    Gore DC, Herndon DN, Wolfe RR (2005) Comparison of peripheral metabolic effects of insulin and metformin following severe burn injury. J Trauma 59: 316–323CrossRefPubMedGoogle Scholar
  35. 35.
    White MF (1997) The insulin signalling system and the IRS proteins. Diabetologia 40 (Suppl 2): 2–17CrossRefGoogle Scholar
  36. 36.
    Folli F, Saad MJ, Backer JM, Kahn CR (1992) Insulin stimulation of phosphatidylinositol 3-kinase activity and association with insulin receptor substrate 1 in liver and muscle of the intact rat. J Biol Chem 267: 22171–22177PubMedGoogle Scholar
  37. 37.
    Yu XX, Pandey SK, Booten SL, Murray SF, Monia BP, Bhanot S (2008) Reduced adiposity and improved insulin sensitivity in obese mice with antisense suppression of 4E-BP2 expression. Am J Physiol Endocrinol Metab 294: 530–539CrossRefGoogle Scholar
  38. 38.
    Saltiel AR, Pessin JE (2003) Insulin signaling in microdomains of the plasma membrane. Traffic 4: 711–716CrossRefPubMedGoogle Scholar
  39. 39.
    Ikezu T, Okamoto T, Yonezawa K, Tompkins RG, Martyn JA (1997) Analysis of thermal injury-induced insulin resistance in rodents. Implication of postreceptor mechanisms. J Biol Chem 272: 25289–25295CrossRefPubMedGoogle Scholar
  40. 40.
    Chang L, Chiang SH, Saltiel AR (2004) Insulin signaling and the regulation of glucose transport. Mol Med 10: 65–71PubMedGoogle Scholar
  41. 41.
    Thurmond DC, Pessin JE (2001) Molecular machinery involved in the insulin-regulated fusion of GLUT4-containing vesicles with the plasma membrane. Mol Membr Biol 18: 237–245PubMedGoogle Scholar
  42. 42.
    Le Roith D, Zick Y (2001) Recent advances in our understanding of insulin action and insulin resistance. Diabetes Care 24: 588–597CrossRefPubMedGoogle Scholar
  43. 43.
    Hunt DG, Ivy JL (2002) Epinephrine inhibits insulin-stimulated muscle glucose transport. J Appl Physiol 93: 1638–1643PubMedGoogle Scholar
  44. 44.
    Hotamisligil GS, Budavari A, Murray D, Spiegelman BM (1994) Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factoralpha. J Clin Invest 94: 1543–1549CrossRefPubMedGoogle Scholar
  45. 45.
    Ozcan U, Cao Q, Yilmaz E, et al (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306: 457–461CrossRefPubMedGoogle Scholar
  46. 46.
    Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8: 519–529CrossRefPubMedGoogle Scholar
  47. 47.
    Ozcan U, Yilmaz E, Ozcan L, et al (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313: 1137–1140CrossRefPubMedGoogle Scholar
  48. 48.
    Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115: 1111–1119PubMedGoogle Scholar
  49. 49.
    Shoelson SE, Lee J, Goldfine AB (2006) Inflammation and insulin resistance. J Clin Invest 116: 1793–1801CrossRefPubMedGoogle Scholar
  50. 50.
    Pilon G, Dallaire P, Marette A (2004) Inhibition of inducible nitric-oxide synthase by activators of AMP-activated protein kinase: a new mechanism of action of insulin-sensitizing drugs. J Biol Chem 279: 20767–20774CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • G. G. Gauglitz
    • 1
  • M. G. Jeschke
    • 2
  1. 1.Department of Dermatology and AllergologyLudwig Maximilians UniversityMunichGermany
  2. 2.Galveston Burns UnitShriners Hospitals for ChildrenGalvestonUSA

Personalised recommendations