Therapeutic Hypothermia after Cardiac Arrest

  • G. Ristagno
  • W. Tang
Conference paper


Patients who are successfully resuscitated following cardiac arrest often present with what is now termed ‘post-resuscitation disease’ [1]. Most prominent, are post-resuscitation myocardial failure and ischemic brain damage. Although post-resuscitation myocardial dysfunction has been implicated as an important mechanism accounting for fatal outcomes after cardiac resuscitation [2, 3, 4], morbidity and mortality after successful cardiopulmonary resuscitation (CPR) largely also depends on recovery of neurologic function. As many as 30 % of survivors of cardiac arrest in fact manifest permanent brain damage [5, 6, 7]. The greatest post-resuscitation emphasis has been on long-term neurologically intact survival [8]. Evidence favoring correction of electrolyte and glucose abnormalities, control of post-resuscitation cardiac rate, rhythm, systemic blood pressure, and intravascular volumes are cited but objective proof of these interventions is still anedoctal. Of all interventions, the most persuasive benefits have followed the use of hypothermia [8].


Cardiac Arrest Therapeutic Hypothermia Cereb Blood Flow Spontaneous Circulation Mild Therapeutic Hypothermia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adrie C, Laurent I, Monchi M, et al (2004) Postresuscitation disease after cardiac arrest: a sepsis-like syndrome? Curr Opin Crit Care 10: 208–212CrossRefPubMedGoogle Scholar
  2. 2.
    Tang W, Weil MH, Sun S, et al (1993) Progressive myocardial dysfunction after cardiac resuscitation. Crit Care Med 21: 1046–1050CrossRefPubMedGoogle Scholar
  3. 3.
    Peatfield RC, Sillett RW, Taylor D, McNicol MW (1977) Survival after cardiac arrest in the hospital. Lancet 1: 1223–1225CrossRefPubMedGoogle Scholar
  4. 4.
    DeBard ML (1981) Cardiopulmonary resuscitation: analysis of six years’ experience and review of the literature. Ann Emerg Med 10: 408–416CrossRefPubMedGoogle Scholar
  5. 5.
    Safar P (1993) Cerebral resuscitation after cardiac arrest: research initiatives and future directions. Ann Emerg Med 22: 324–349CrossRefPubMedGoogle Scholar
  6. 6.
    Brain Resuscitation Clinical Trial II Study Group (1991) A randomized clinical study of a calcium-entry blocker (lidoflazine) in the treatment of comatose survivors of cardiac arrest. N Engl J Med 324: 1225–1231CrossRefGoogle Scholar
  7. 7.
    Eisenberg MS, Horwood BT, Cummins RO, Reynolds-Haertle R, Hearne TR (1990) Cardiac arrest and resuscitation: a tale of 29 cities. Ann Emerg Med 19: 179–186CrossRefPubMedGoogle Scholar
  8. 8.
    American Heart Association (2005) Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Part 7.5: Postresuscitation support. Circulation 112: IV-84–IV-88CrossRefGoogle Scholar
  9. 9.
    Safar P, Xiao F, Radovsky A, et al (1996) Improved cerebral resuscitation from cardiac arrest in dogs with mild hypothermia plus blood flow promotion. Stroke 27: 105–113PubMedGoogle Scholar
  10. 10.
    Walpoth BH, Walpoth-Aslan BN, Mattle HP, et al (1997) Outcome of survivors of accidental deep hypothermia and circulatory arrest treated with extracorporeal blood warming. N Engl J Med 337: 1500–1505CrossRefPubMedGoogle Scholar
  11. 11.
    The Hypothermia After Cardiac Arrest Study Group (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346: 549–556CrossRefGoogle Scholar
  12. 12.
    Bernard SA, Gray TW, Buist MD, et al (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346: 557–563CrossRefPubMedGoogle Scholar
  13. 13.
    Shaffner DH, Eleff SM, Koehler RC, Traystman RJ (1998) Effect of the no-flow interval and hypothermia on cerebral blood flow and metabolism during cardiopulmonary resuscitation in dogs. Stroke 29: 2607–2615PubMedGoogle Scholar
  14. 14.
    Fischer M, Hossmann KA (1995) No-reflow after cardiac arrest. Intensive Care Med 21: 132–141CrossRefPubMedGoogle Scholar
  15. 15.
    Liachenko S, Tang P, Hamilton RL, Xu Y (2001) Regional dependence of cerebral reperfusion after circulatory arrest in rats. J Cereb Blood Flow Metab 21: 1320–1329CrossRefPubMedGoogle Scholar
  16. 16.
    Ristagno G, Tang W, Sun S, Weil MH (2008) Cerebral cortical microvascular flow during and following cardiopulmonary resuscitation after short duration of cardiac arrest. Resuscitation 77: 229–234CrossRefPubMedGoogle Scholar
  17. 17.
    D’Cruz BJ, Fertig KC, Filiano AJ, Hicks SD, DeFranco DB, Callaway CW (2002) Hypothermic reperfusion after cardiac arrest augments brain-derived neurotrophic factor activation. J Cereb Blood Flow Metab 22: 843–851CrossRefPubMedGoogle Scholar
  18. 18.
    Dietrich WD, Busto R, Alonso O, Globus MY-T, Ginsberg MD (1993) Intraischemic but not postischemic brain hypothermia protects chronically following global forebrain ischemia in rats. J Cereb Blood Flow Metab 14: 541–549Google Scholar
  19. 19.
    Ooboshi H, Ibayashi S, Takano K, et al (2000) Hypothermia inhibits ischemia-induced efflux of amino acids and neuronal damage in the hippocampus of aged rats. Brain Res 884: 23–30CrossRefPubMedGoogle Scholar
  20. 20.
    Busijia DW, Leffler CW (1987) Hypothermia reduces cerebral metabolic rate and cerebral blood flow in newborn pigs. Am J Physiol 253: H869–H873Google Scholar
  21. 21.
    Okubo K, Itoh S, Isobe K (2001) Cerebral metabolism and regional blood flow during moderate systemic cooling in newborn piglets. Pediatr Int 43: 496–501CrossRefPubMedGoogle Scholar
  22. 22.
    Wang Y, Zhu L (2007) Targeted brain hypothermia induced by an interstitial cooling device in human neck: theoretical analyses. Eur J Appl Physiol 101: 31–40CrossRefPubMedGoogle Scholar
  23. 23.
    Kuluz JW, Prado R, Chang J, et al (1993) Selective brain cooling increases cortical cerebral blood flow in rats. Am J Physiol 265: H824–H827PubMedGoogle Scholar
  24. 24.
    Mustafa S, Thulesius O (2002) Cooling-induced carotid artery dilatation: an experimental study in isolated vessels. Stroke 33: 256–260CrossRefPubMedGoogle Scholar
  25. 25.
    Mustafa S, Elgazzar AH, Ismael HN (2007) Influence of hyperthermia on carotid blood flow using 99mTc-HMPAO. Eur J Appl Physiol 101: 257–262CrossRefPubMedGoogle Scholar
  26. 26.
    Strauch JT, Spielvogel D, Haldenwang PL, et al (2003) Cerebral physiology and outcome after hypothermic circulatory arrest followed by selective cerebral perfusion. Ann Thorac Surg 76: 1972–1981CrossRefPubMedGoogle Scholar
  27. 27.
    Lavinio A, Timofeev I, Nortje J, et al (2007) Carebrovascular reactivity during hypothermia and rewarming. Br J Anaesth 99: 237–244CrossRefPubMedGoogle Scholar
  28. 28.
    Tang W, Weil MH, Sun S, Pernat A, Mason E (2000) K(ATP) channel activation reduces the severity of postresuscitation myocardial dysfunction. Am J Physiol Heart Circ Physiol 279: H1609–H1615PubMedGoogle Scholar
  29. 29.
    Shao ZH, Chang WT, Chan KC, et al (2007) Hypothermia-induced cardioprotection using extended ischemia and early reperfusion cooling. Am J Physiol Heart Circ Physiol 292: H1995–H2003CrossRefPubMedGoogle Scholar
  30. 30.
    Dave RH, Hale SL, Kloner RA (1998) Hypothermic, closed circuit pericardioperfusion: a potential cardioprotective technique in acute regional ischemia. J Am Coll Cardiol 31: 1667–1671CrossRefPubMedGoogle Scholar
  31. 31.
    Tissier R, Hamanaka K, Kuno A, Parker JC, Cohen MV, Downey JM (2007) Total liquid ventilation provides ultra-fast cardioprotective cooling. J Am Coll Cardiol 49: 601–605CrossRefPubMedGoogle Scholar
  32. 32.
    Boddicker KA, Zhang Y, Zimmerman MB, Davies LR, Kerber RE (2005) Hypothermia improved defibrillation success and resuscitation outcomes from ventricular fibrillation. Circulation 111: 3195–3201CrossRefPubMedGoogle Scholar
  33. 33.
    Buckberg GD, Brazier JR, Nelson RL, et al (1977) Studies of the effects of hypothermia on regional myocardial blood flow and metabolism during cardiopulmonary bypass. I. The adequately perfused beating, fibrillating, and arrested heart. J Thorac Cardiovasc Surg 73: 87–94PubMedGoogle Scholar
  34. 34.
    Ning XH, Xu CS, Portman MA (1999) Mitochondrial protein and HSP70 signaling after ischemia in hypothermic-adapted hearts augmented with glucose. Am J Physiol 277: R11–R17PubMedGoogle Scholar
  35. 35.
    Khaliulin I, Clarke SJ, Lin H, Parker J, Suleiman MS, Halestrap AP (2007) Temperature preconditioning of isolated rat hearts—a potent cardioprotective mechanism involving a reduction in oxidative stress and inhibition of the mitochondrial permeability transition pore. J Physiol 581: 1147–1161CrossRefPubMedGoogle Scholar
  36. 36.
    Harrison SM, Bers DM (1989) Influence of temperature on the calcium sensitivity of the myofilaments of skinned ventricular muscle from the rabbit. J Gen Physiol 93: 411–428CrossRefPubMedGoogle Scholar
  37. 37.
    Ning XH, Chi EY, Buroker NE, et al (2007) Moderate hypothermia (30 degrees C) maintains myocardial integrity and modifies response of cell survival proteins after reperfusion. Am J Physiol Heart Circ Physiol 293: H2119–H2128CrossRefPubMedGoogle Scholar
  38. 38.
    Zhao D, Abella BS, Beiser DG, et al (2008) Intra-arrest cooling with delayed reperfusion yields higher survival than earlier normothermic resuscitation in a mouse model of cardiac arrest. Resuscitation 77: 242–249CrossRefPubMedGoogle Scholar
  39. 39.
    Tsai MS, Barbut D, Tang W, et al (2008) Rapid head cooling initiated coincident with cardio-pulmonary resuscitation improves success of defibrillation and post-resuscitation myocardial function in a porcine model of prolonged cardiac arrest. J Am Coll Cardiol 51: 1988–1990CrossRefPubMedGoogle Scholar
  40. 40.
    Guan J, Tang W, Wang H, et al (2007) Early head cooling during resuscitation culminating in systemic hypothermia results in better neurological outcome than delayed systemic hypothermia in pigs. Crit Care Med 35: A95 (abst)CrossRefGoogle Scholar
  41. 41.
    Wang H, Tsai MS, Guan J, Tang W, Sun S, Weil MH (2007) Intra-arrest rapid head cooling improves success of resuscitation in a porcine model of prolonged cardiac arrest. Crit Care Med 35: A94 (abst)Google Scholar
  42. 42.
    Rhee BJ, Zhang Y, Boddicker KA, et al (2005) Effect of hypothermia on transthoracic defibrillation in a swine model. Resuscitation 65: 79–85CrossRefPubMedGoogle Scholar
  43. 43.
    Leonov Y, Sterz F, Safar P, et al (1990) Mild cerebral hypothermia during and after cardiac arrest improves neurologic outcome in dogs. J Cereb Blood Flow Metab 10: 57–70PubMedGoogle Scholar
  44. 44.
    Abella BS, Zhao D, Alvarado J, Hamann K, Vanden Hoek TL, Becker LB (2004) Intra-arrest cooling improves outcomes in a murine cardiac arrest model. Circulation 09: 2786–2791CrossRefGoogle Scholar
  45. 45.
    Maier CM, Abern K, Cheng ML, et al (1998) Optimal depth and duration of mild hypothermia in a focal model of transient cerebral ischemia: effects on neurologic outcome, infarct size, apoptosis, and inflammation. Stroke 29: 2171–2180PubMedGoogle Scholar
  46. 46.
    Kuboyama K, Safar P, Radovsky A, Tisherman SA, Stezoski SW, Alexander H (1993) Delay in cooling negates the beneficial effect of mild resuscitative cerebral hypothermia after cardiac arrest in dogs: a prospective, randomized study. Crit Care Med 21: 1348–1358CrossRefPubMedGoogle Scholar
  47. 47.
    Wolff B, Machill K, Schumacher D, Schulzki I, Werner D (2009) Early achievement of mild therapeutic hypothermia and the neurologic outcome after cardiac arrest. Int J Cardiol (in press)Google Scholar
  48. 48.
    Kim F, Olsufka M, Longstreth WT Jr, et al (2007) Pilot randomized clinical trial of prehospital induction of mild hypothermia in out-of-hospital cardiac arrest patients with a rapid infusion of 4 degrees C normal saline. Circulation 115: 3064–3070CrossRefPubMedGoogle Scholar
  49. 49.
    Frank SM, Cattaneo CG, Wieneke-Brady MB, et al (2002) Threshold for adrenomedullary activation and increased cardiac work during mild core hypothermia. Clin Sci (Lond) 102: 119–125CrossRefGoogle Scholar
  50. 50.
    Kawada T, Kitagawa H, Yamazaki T, et al (2007) Hypothermia reduces ischemia-and stimulation-induced myocardial interstitial norepinephrine and acetylcholine releases. J Appl Physiol 102: 622–627CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • G. Ristagno
    • 1
  • W. Tang
    • 2
  1. 1.Weil Institute of Critical Care MedicineRancho MirageUSA
  2. 2.Weil Institute of Critical CareRancho MirageUSA

Personalised recommendations