Skip to main content

Advanced Minimally Invasive Hemodynamic Monitoring of the High-risk Major Surgery Patient

  • Conference paper
Intensive Care Medicine
  • 1336 Accesses

Abstract

Despite major advances in monitoring technology in the last 20 years or so, perioperative management of the high-risk major surgery patient remains virtually unchanged. The vast majority of patients receive preoperative assessment which is neither designed to quantify functional capacity nor able to predict outcome. Anesthesiologists then usually monitor these patients intraoperatively using technology (e.g., oxygen saturation by pulse oximetry [SpO2], invasive blood pressure and central venous pressure [CVP] monitoring, end-tidal carbon dioxide [ETCO2], and anesthetic agent monitoring) that has not undergone major changes since the mid to late 80s. Patients are then consigned to a postoperative environment where they are managed by the most junior surgical and anesthesia staff. It is not surprising that outcome, in the UK at least, remains poor in high-risk patients [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jhanji S, Thomas B, Ely A, Watson D, Hinds CJ, Pearse RM (2008) Mortality and utilisation of critical care resources amongst high-risk surgical patients in a large NHS trust. Anaesthesia 63: 695–700

    Article  CAS  PubMed  Google Scholar 

  2. Boyd O, Grounds RM, Bennett ED (1993) A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. JAMA 270: 2699–2707

    Article  CAS  PubMed  Google Scholar 

  3. Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennett ED (2005) Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit Care 9:R687–693

    Article  PubMed  Google Scholar 

  4. Older P, Hall A (2004) Clinical review: how to identify high-risk surgical patients. Crit Care 8: 369–372

    Article  PubMed  Google Scholar 

  5. Shoemaker WC, Appel PL, Kram HB (1993) Hemodynamic and oxygen transport responses in survivors and nonsurvivors of high-risk surgery. Crit Care Med 21: 977–990

    Article  CAS  PubMed  Google Scholar 

  6. Lee JT, Chaloner EJ, Hollingsworth SJ (2006) The role of cardiopulmonary fitness and its genetic influences on surgical outcomes. Br J Surg 93: 147–157

    Article  CAS  PubMed  Google Scholar 

  7. Shires T, Williams J, Brown F (1961) Acute change in extracellular fluids associated with major surgical procedures. Ann Surg 154: 803–810

    Article  CAS  PubMed  Google Scholar 

  8. McFall MR, Woods WG, Wakeling HG (2004) The use of oesophageal Doppler cardiac output measurement to optimize fluid management during colorectal surgery. Eur J Anaesthesiol 21: 581–583

    CAS  PubMed  Google Scholar 

  9. Brandstrup B, Tonnesen H, Beier-Holgersen R, et al (2003) Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg 238: 641–648

    Article  PubMed  Google Scholar 

  10. Green DW (2007) Comparison of cardiac outputs during major surgery using the Deltex CardioQ oesophageal Doppler monitor and the Novametrix-Respironics NICO: a prospective observational study. Int J Surg 5: 176–182

    Article  CAS  PubMed  Google Scholar 

  11. Holte K, Foss NB, Andersen J, et al (2007) Liberal or restrictive fluid administration in fasttrack colonic surgery: a randomized, double-blind study. Br J Anaesth 99: 500–508

    Article  CAS  PubMed  Google Scholar 

  12. Junghans T, Neuss H, Strohauer M, et al (2006) Hypovolemia after traditional preoperative care in patients undergoing colonic surgery is underrepresented in conventional hemodynamic monitoring. Int J Colorectal Dis 21: 693–697

    Article  PubMed  Google Scholar 

  13. Lee JH, Kim JT, Yoon SZ, et al (2007) Evaluation of corrected flow time in oesophageal Doppler as a predictor of fluid responsiveness. Br J Anaesth 99: 343–348

    Article  PubMed  Google Scholar 

  14. Wakeling HG, McFall MR, Jenkins CS, et al (2005) Intraoperative oesophageal Doppler guided fluid management shortens postoperative hospital stay after major bowel surgery. Br J Anaesth 95: 634–642

    Article  CAS  PubMed  Google Scholar 

  15. Venn R, Steele A, Richardson P, Poloniecki J, Grounds M, Newman P (2002) Randomized controlled trial to investigate influence of the fluid challenge on duration of hospital stay and perioperative morbidity in patients with hip fractures. Br J Anaesth 88: 65–71

    Article  CAS  PubMed  Google Scholar 

  16. Abbas SM, Hill AG (2008) Systematic review of the literature for the use of oesophageal Doppler monitor for fluid replacement in major abdominal surgery. Anaesthesia 63: 44–51

    Article  CAS  PubMed  Google Scholar 

  17. Noblett SE, Snowden CP, Shenton BK, Horgan AF (2006) Randomized clinical trial assessing the effect of Doppler-optimized fluid management on outcome after elective colorectal resection. Br J Surg 93: 1069–1076

    Article  CAS  PubMed  Google Scholar 

  18. Monk TG, Saini V, Weldon BC, Sigl JC (2005) Anesthetic management and one-year mortality after noncardiac surgery. Anesth Analg 100: 4–10

    Article  PubMed  Google Scholar 

  19. Green DW (2007) A retrospective study of changes in cerebral oxygenation using a cerebral oximeter in older patients undergoing prolonged major abdominal surgery. Eur J Anaesthesiol 24: 230–234

    Article  CAS  PubMed  Google Scholar 

  20. Casati A, Fanelli G, Pietropaoli P, et al (2005) Continuous monitoring of cerebral oxygen saturation in elderly patients undergoing major abdominal surgery minimizes brain exposure to potential hypoxia. Anesth Analg 101: 740–747

    Article  PubMed  Google Scholar 

  21. Murkin JM, Adams SJ, Novick RJ, et al (2007) Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg 104: 51–58

    Article  PubMed  Google Scholar 

  22. Dellweg D, Siemon K, Mahler F, Appelhans P, Klauke M, Kohler D (2008) [Cardiopulmonary exercise testing before and after blood donation]. Pneumologie 62: 372–377

    Article  CAS  PubMed  Google Scholar 

  23. Cannesson M, Desebbe O, Rosamel P, et al (2008) Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaesth 101: 200–206

    Article  CAS  PubMed  Google Scholar 

  24. Gan TJ, Soppitt A, Maroof M, et al (2002) Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology 97: 820–826

    Article  PubMed  Google Scholar 

  25. Jaffe MB (1999) Partial CO2 rebreathing cardiac output—operating principles of the NICO system. J Clin Monit Comput 15: 387–401

    Article  CAS  PubMed  Google Scholar 

  26. Cholley BP, Payen D (2005) Noninvasive techniques for measurements of cardiac output. Curr Opin Crit Care 11: 424–429

    Article  PubMed  Google Scholar 

  27. Jonas MM, Tanser SJ (2002) Lithium dilution measurement of cardiac output and arterial pulse waveform analysis: an indicator dilution calibrated beat-by-beat system for continuous estimation of cardiac output. Curr Opin Crit Care 8: 257–261

    Article  PubMed  Google Scholar 

  28. Dyer RA, Piercy JL, Reed AR, Lombard CJ, Schoeman LK, James MF (2008) Hemodynamic changes associated with spinal anesthesia for cesarean delivery in severe preeclampsia. Anesthesiology 108: 802–811

    Article  CAS  PubMed  Google Scholar 

  29. Belloni L, Pisano A, Natale A, et al (2008) Assessment of fluid-responsiveness parameters for off-pump coronary artery bypass surgery: A comparison among LiDCO, transesophageal echochardiography, and pulmonary artery catheter. J Cardiothorac Vasc Anesth 22: 243–248

    Article  PubMed  Google Scholar 

  30. Pearse RM, Ikram K, Barry J (2004) Equipment review: an appraisal of the LiDCO plus method of measuring cardiac output. Crit Care 8: 190–195

    Article  PubMed  Google Scholar 

  31. Pittman J, Bar-Yosef S, SumPing J, Sherwood M, Mark J (2005) Continuous cardiac output monitoring with pulse contour analysis: a comparison with lithium indicator dilution cardiac output measurement. Crit Care Med 33: 2015–2021

    Article  PubMed  Google Scholar 

  32. Costa MG, Della Rocca G, Chiarandini P, et al (2008) Continuous and intermittent cardiac output measurement in hyperdynamic conditions: pulmonary artery catheter vs. lithium dilution technique. Intensive Care Med 34: 257–263

    Article  PubMed  Google Scholar 

  33. Yamashita K, Nishiyama T, Yokoyama T, Abe H, Manabe M (2007) Effects of vasodilation on cardiac output measured by PulseCO. J Clin Monit Comput 21: 335–339

    Article  PubMed  Google Scholar 

  34. de Wilde RB, Schreuder JJ, van den Berg PC, Jansen JR (2007) An evaluation of cardiac output by five arterial pulse contour techniques during cardiac surgery. Anaesthesia 62: 760–768

    Article  PubMed  Google Scholar 

  35. Cooper ES, Muir WW (2007) Continuous cardiac output monitoring via arterial pressure waveform analysis following severe hemorrhagic shock in dogs. Crit Care Med 35: 1724–1729

    Article  PubMed  Google Scholar 

  36. Berberian G, Quinn TA, Vigilance DW, et al (2005) Validation study of PulseCO system for continuous cardiac output measurement. Asaio J 51: 37–40

    Article  PubMed  Google Scholar 

  37. Critchley LA, Critchley JA (1999) A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput 15: 85–91

    Article  CAS  PubMed  Google Scholar 

  38. Langewouters GJ, Wesseling KH, Goedhard WJ (1985) The pressure dependent dynamic elasticity of 35 thoracic and 16 abdominal human aortas in vitro described by a five component model. J Biomech 18: 613–20

    Article  CAS  PubMed  Google Scholar 

  39. Preisman S, Kogan S, Berkenstadt H, Perel A (2005) Predicting fluid responsiveness in patients undergoing cardiac surgery: functional haemodynamic parameters including the Respiratory Systolic Variation Test and static preload indicators. Br J Anaesth 95: 746–755

    Article  CAS  PubMed  Google Scholar 

  40. Berkenstadt H, Margalit N, Hadani M, et al (2001) Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg 92: 984–989

    Article  CAS  PubMed  Google Scholar 

  41. Valverde A, Giguere S, Morey TE, Sanchez LC, Shih A (2007) Comparison of noninvasive cardiac output measured by use of partial carbon dioxide rebreathing or the lithium dilution method in anesthetized foals. Am J Vet Res 68: 141–147

    Article  CAS  PubMed  Google Scholar 

  42. Opdam HI, Wan L, Bellomo R (2007) A pilot assessment of the FloTrac(TM) cardiac output monitoring system. Intensive Care Med 33: 344–349

    Article  PubMed  Google Scholar 

  43. Manecke GR Jr., Auger WR (2007) Cardiac output determination from the arterial pressure wave: clinical testing of a novel algorithm that does not require calibration. J Cardiothorac Vasc Anesth 21: 3–7

    Article  PubMed  Google Scholar 

  44. Gueret G, Kiss G, Khaldi S, et al (2007) Comparison of cardiac output measurements between NICO and the pulmonary artery catheter during repeat surgery for total hip replacement. Eur J Anaesthesiol 24: 1028–1033

    Article  CAS  PubMed  Google Scholar 

  45. Baylor P (2006) Lack of agreement between thermodilution and fick methods in the measurement of cardiac output. J Intensive Care Med 21: 93–98

    Article  PubMed  Google Scholar 

  46. Hallowell GD, Corley KT (2005) Use of lithium dilution and pulse contour analysis cardiac output determination in anaesthetized horses: a clinical evaluation. Vet Anaesth Analg 32: 201–211

    Article  PubMed  Google Scholar 

  47. Fassiadis N, Zayed H, Rashid H, Green DW (2006) Invos(R) Cerebral Oximeter compared with the transcranial Doppler for monitoring adequacy of cerebral perfusion in patients undergoing carotid endarterectomy. Int Angiol 25: 401–406

    CAS  PubMed  Google Scholar 

  48. Orme RM, McSwiney MM, Chamberlain-Webber RF (2007) Fatal cardiac tamponade as a result of a peripherally inserted central venous catheter: a case report and review of the literature. Br J Anaesth 99: 384–388

    Article  PubMed  Google Scholar 

  49. Wigmore TJ, Smythe JF, Hacking MB, Raobaikady R, MacCallum NS (2007) Effect of the implementation of NICE guidelines for ultrasound guidance on the complication rates associated with central venous catheter placement in patients presenting for routine surgery in a tertiary referral centre. Br J Anaesth 99: 662–665

    Article  CAS  PubMed  Google Scholar 

  50. Wang WD, Liang LJ, Huang XQ, Yin XY (2006) Low central venous pressure reduces blood loss in hepatectomy. World J Gastroenterol 12: 935–939

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Green, D.W. (2009). Advanced Minimally Invasive Hemodynamic Monitoring of the High-risk Major Surgery Patient. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92278-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-92278-2_44

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-92277-5

  • Online ISBN: 978-0-387-92278-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics