Advertisement

Clinical Utility of Extravascular Lung Water Measurements

  • X. Monnet
  • J.-L. Teboul

Abstract

In physiological conditions, the hydrostatic pressure of the pulmonary microvessels induces the transfer of a certain amount of fluid into the interstitial space. The lymphatic system drains this large amount of fluid toward the thoracic duct, avoiding alveolar edema. Thus, in physiology, the extravascular lung water (EVLW) is the volume of fluid that has been filtered from the vessels and that has been eliminated by lymphatic drainage. In physiological conditions, this volume is low, less than 7 ml/kg of body weight.

Keywords

Acute Lung Injury Acute Respiratory Distress Syndrome Acute Respiratory Distress Syndrome Patient Extravascular Lung Water Pulmonary Artery Occlusion Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Monnet X, Anguel N, Osman D, et al (2007) Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ ARDS. Intensive Care Med 33: 448–453CrossRefPubMedGoogle Scholar
  2. 2.
    Sakka SG, Klein M, Reinhart K, Meier-Hellmann A (2002) Prognostic value of extravascular lung water in critically ill patients. Chest 122: 2080–2086CrossRefPubMedGoogle Scholar
  3. 3.
    Mitchell JP, Schuller D, Calandrino FS, Schuster DP (1992) Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Respir Dis 145: 990–998PubMedGoogle Scholar
  4. 4.
    Lichtenstein D, Goldstein I, Mourgeon E, et al (2004) Comparative diagnostic performances of auscultation, chest radiography, and lung ultrasonography in acute respiratory distress syndrome. Anesthesiology 100: 9–15CrossRefPubMedGoogle Scholar
  5. 5.
    Bock JC, Lewis FR (1990) Clinical relevance of lung water measurement with the thermal-dye dilution technique. J Surg Res 48: 254–265CrossRefPubMedGoogle Scholar
  6. 6.
    Mihm FG, Feeley TW, Jamieson SW (1987) Thermal dye double indicator dilution measurement of lung water in man: comparison with gravimetric measurements. Thorax 42: 72–76CrossRefPubMedGoogle Scholar
  7. 7.
    Patroniti N, Bellani G, Maggioni E, et al (2005) Measurement of pulmonary edema in patients with acute respiratory distress syndrome. Crit Care Med 33: 2547–2554CrossRefPubMedGoogle Scholar
  8. 8.
    Godje O, Peyerl M, Seebauer T, Dewald O, Reichart B (1998) Reproducibility of double indica-tor dilution measurements of intrathoracic blood volume compartments, extravascular lung water, and liver function. Chest 113: 1070–1077CrossRefPubMedGoogle Scholar
  9. 9.
    Sakka SG, Ruhl CC, Pfeiffer UJ, et al (2000) Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 26: 180–187CrossRefPubMedGoogle Scholar
  10. 10.
    Reuter DA, Felbinger TW, Moerstedt K, et al (2002) Intrathoracic blood volume index measured by thermodilution for preload monitoring after cardiac surgery. J Cardiothorac Vasc Anesth 16: 191–195CrossRefPubMedGoogle Scholar
  11. 11.
    Michard F, Schachtrupp A, Toens C (2005) Factors influencing the estimation of extravascular lung water by transpulmonary thermodilution in critically ill patients. Crit Care Med 33: 1243–1247CrossRefPubMedGoogle Scholar
  12. 12.
    Neumann P (1999) Extravascular lung water and intrathoracic blood volume: double versus single indicator dilution technique. Intensive Care Med 25: 216–219CrossRefPubMedGoogle Scholar
  13. 13.
    Rossi P, Wanecek M, Rudehill A, et al (2006) Comparison of a single indicator and gravimetric technique for estimation of extravascular lung water in endotoxemic pigs. Crit Care Med 34: 1437–1443CrossRefPubMedGoogle Scholar
  14. 14.
    Kirov MY, Kuzkov VV, Kuklin VN, Waerhaug K, Bjertnaes LJ (2004) Extravascular lung water assessed by transpulmonary single thermodilution and postmortem gravimetry in sheep. Crit Care 8:R451–458CrossRefPubMedGoogle Scholar
  15. 15.
    Katzenelson R, Perel A, Berkenstadt H, et al (2004) Accuracy of transpulmonary thermodilution versus gravimetric measurement of extravascular lung water. Crit Care Med 32: 1550–1554CrossRefPubMedGoogle Scholar
  16. 16.
    Nirmalan M, Willard TM, Edwards DJ, Little RA, Dark PM (2005) Estimation of errors in determining intrathoracic blood volume using the single transpulmonary thermal dilution technique in hypovolemic shock. Anesthesiology 103: 805–812CrossRefPubMedGoogle Scholar
  17. 17.
    Roch A, Michelet P, Lambert D, et al (2004) Accuracy of the double indicator method for measurement of extravascular lung water depends on the type of acute lung injury. Crit Care Med 32: 811–817CrossRefPubMedGoogle Scholar
  18. 18.
    Carlile PV, Gray BA (1984) Type of lung injury influences the thermal-dye estimation of extravascular lung water. J Appl Physiol 57: 680–685PubMedGoogle Scholar
  19. 19.
    Beckett RC, Gray BA (1982) Effect of atelectasis and embolization on extravascular thermal volume of the lung. J Appl Physiol 53: 1614–1619PubMedGoogle Scholar
  20. 20.
    Allison RC, Parker JC, Duncan CE, Taylor AE (1983) Effect of air embolism on the measurement of extravascular lung thermal volume. J Appl Physiol 54: 943–949PubMedGoogle Scholar
  21. 21.
    Groeneveld AB, Verheij J (2004) Is pulmonary edema associated with a high extravascular thermal volume? Crit Care Med 32: 899–901CrossRefPubMedGoogle Scholar
  22. 22.
    Slutsky RA (1983) Reduction in pulmonary blood volume during positive end-expiratory pressure. J Surg Res 35: 181–187CrossRefPubMedGoogle Scholar
  23. 23.
    Carlile PV, Lowery DD, Gray BA (1986) Effect of PEEP and type of injury on thermal-dye estimation of pulmonary edema. J Appl Physiol 60: 22–31PubMedGoogle Scholar
  24. 24.
    Luecke T, Roth H, Herrmann P, et al (2003) PEEP decreases atelectasis and extravascular lung water but not lung tissue volume in surfactant-washout lung injury. Intensive Care Med 29: 2026–2033CrossRefPubMedGoogle Scholar
  25. 25.
    Berkowitz DM, Danai PA, Eaton S, Moss M, Martin GS (2008) Accurate characterization of extravascular lung water in acute respiratory distress syndrome. Crit Care Med 36: 1803–1809CrossRefPubMedGoogle Scholar
  26. 26.
    Phillips CR, Chesnutt MS, Smith SM (2008) Extravascular lung water in sepsis-associated acute respiratory distress syndrome: indexing with predicted body weight improves correlation with severity of illness and survival. Crit Care Med 36: 69–73CrossRefPubMedGoogle Scholar
  27. 27.
    Lange NR, Schuster DP (1999) The measurement of lung water. Crit Care 3:R19–R24CrossRefPubMedGoogle Scholar
  28. 28.
    Kunst PW, Vonk Noordegraaf A, Raaijmakers E, et al (1999) Electrical impedance tomography in the assessment of extravascular lung water in noncardiogenic acute respiratory failure. Chest 116: 1695–1702CrossRefPubMedGoogle Scholar
  29. 29.
    Groeneveld AB, Verheij J (2006) Extravascular lung water to blood volume ratios as measures of permeability in sepsis-induced ALI/ARDS. Intensive Care Med 32: 1315–1321CrossRefPubMedGoogle Scholar
  30. 30.
    Combes A, Berneau JB, Luyt CE, Trouillet JL (2004) Estimation of left ventricular systolic function by single transpulmonary thermodilution. Intensive Care Med 30: 1377–1383PubMedGoogle Scholar
  31. 31.
    Monnet X, Teboul JL (2006) Invasive measures of left ventricular preload. Curr Opin Crit Care 12: 235–240CrossRefPubMedGoogle Scholar
  32. 32.
    Bernard GR, Artigas A, Brigham KL, et al (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149: 818–824PubMedGoogle Scholar
  33. 33.
    Perkins GD, McAuley DF, Thickett DR, Gao F (2006) The beta-agonist lung injury trial (BALTI): a randomized placebo-controlled clinical trial. Am J Respir Crit Care Med 173: 281–287CrossRefPubMedGoogle Scholar
  34. 34.
    Ferguson ND, Meade MO, Hallett DC, Stewart TE (2002) High values of the pulmonary artery wedge pressure in patients with acute lung injury and acute respiratory distress syndrome. Intensive Care Med 28: 1073–1077CrossRefPubMedGoogle Scholar
  35. 35.
    Martin GS, Eaton S, Mealer M, Moss M (2005) Extravascular lung water in patients with severe sepsis: a prospective cohort study. Crit Care 9:R74–82CrossRefPubMedGoogle Scholar
  36. 36.
    Michard F, Zarka V, Alaya S (2004) Better characterization of acute lung injury/ARDS using lung water. Chest 125:1166CrossRefPubMedGoogle Scholar
  37. 37.
    Schuster DP (2007) The search for “objective” criteria of ARDS. Intensive Care Med 33: 400–402CrossRefPubMedGoogle Scholar
  38. 38.
    Kuzkov VV, Kirov MY, Sovershaev MA, et al (2006) Extravascular lung water determined with single transpulmonary thermodilution correlates with the severity of sepsis-induced acute lung injury. Crit Care Med 34: 1647–1653CrossRefPubMedGoogle Scholar
  39. 39.
    Wiedemann HP, Wheeler AP, Bernard GR, et al (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354: 2564–2575CrossRefPubMedGoogle Scholar
  40. 40.
    Monnet X, Teboul JL (2007) Volume responsiveness. Curr Opin Crit Care 13: 549–553CrossRefPubMedGoogle Scholar
  41. 41.
    Zeravik J, Pfeiffer UJ (1989) Efficacy of high frequency ventilation combined with volume controlled ventilation in dependency of extravascular lung water. Acta Anaesthesiol Scand 33: 568–574CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • X. Monnet
    • 1
  • J.-L. Teboul
    • 1
  1. 1.Department of Medical Intensive CareHôpital de BicêtreLe Kremlin-BicêtreFrance

Personalised recommendations