Skip to main content

Clinical Utility of Extravascular Lung Water Measurements

  • Conference paper
Intensive Care Medicine
  • 1347 Accesses

Abstract

In physiological conditions, the hydrostatic pressure of the pulmonary microvessels induces the transfer of a certain amount of fluid into the interstitial space. The lymphatic system drains this large amount of fluid toward the thoracic duct, avoiding alveolar edema. Thus, in physiology, the extravascular lung water (EVLW) is the volume of fluid that has been filtered from the vessels and that has been eliminated by lymphatic drainage. In physiological conditions, this volume is low, less than 7 ml/kg of body weight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Monnet X, Anguel N, Osman D, et al (2007) Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ ARDS. Intensive Care Med 33: 448–453

    Article  PubMed  Google Scholar 

  2. Sakka SG, Klein M, Reinhart K, Meier-Hellmann A (2002) Prognostic value of extravascular lung water in critically ill patients. Chest 122: 2080–2086

    Article  PubMed  Google Scholar 

  3. Mitchell JP, Schuller D, Calandrino FS, Schuster DP (1992) Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Respir Dis 145: 990–998

    CAS  PubMed  Google Scholar 

  4. Lichtenstein D, Goldstein I, Mourgeon E, et al (2004) Comparative diagnostic performances of auscultation, chest radiography, and lung ultrasonography in acute respiratory distress syndrome. Anesthesiology 100: 9–15

    Article  PubMed  Google Scholar 

  5. Bock JC, Lewis FR (1990) Clinical relevance of lung water measurement with the thermal-dye dilution technique. J Surg Res 48: 254–265

    Article  CAS  PubMed  Google Scholar 

  6. Mihm FG, Feeley TW, Jamieson SW (1987) Thermal dye double indicator dilution measurement of lung water in man: comparison with gravimetric measurements. Thorax 42: 72–76

    Article  CAS  PubMed  Google Scholar 

  7. Patroniti N, Bellani G, Maggioni E, et al (2005) Measurement of pulmonary edema in patients with acute respiratory distress syndrome. Crit Care Med 33: 2547–2554

    Article  PubMed  Google Scholar 

  8. Godje O, Peyerl M, Seebauer T, Dewald O, Reichart B (1998) Reproducibility of double indica-tor dilution measurements of intrathoracic blood volume compartments, extravascular lung water, and liver function. Chest 113: 1070–1077

    Article  CAS  PubMed  Google Scholar 

  9. Sakka SG, Ruhl CC, Pfeiffer UJ, et al (2000) Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 26: 180–187

    Article  CAS  PubMed  Google Scholar 

  10. Reuter DA, Felbinger TW, Moerstedt K, et al (2002) Intrathoracic blood volume index measured by thermodilution for preload monitoring after cardiac surgery. J Cardiothorac Vasc Anesth 16: 191–195

    Article  PubMed  Google Scholar 

  11. Michard F, Schachtrupp A, Toens C (2005) Factors influencing the estimation of extravascular lung water by transpulmonary thermodilution in critically ill patients. Crit Care Med 33: 1243–1247

    Article  PubMed  Google Scholar 

  12. Neumann P (1999) Extravascular lung water and intrathoracic blood volume: double versus single indicator dilution technique. Intensive Care Med 25: 216–219

    Article  CAS  PubMed  Google Scholar 

  13. Rossi P, Wanecek M, Rudehill A, et al (2006) Comparison of a single indicator and gravimetric technique for estimation of extravascular lung water in endotoxemic pigs. Crit Care Med 34: 1437–1443

    Article  PubMed  Google Scholar 

  14. Kirov MY, Kuzkov VV, Kuklin VN, Waerhaug K, Bjertnaes LJ (2004) Extravascular lung water assessed by transpulmonary single thermodilution and postmortem gravimetry in sheep. Crit Care 8:R451–458

    Article  PubMed  Google Scholar 

  15. Katzenelson R, Perel A, Berkenstadt H, et al (2004) Accuracy of transpulmonary thermodilution versus gravimetric measurement of extravascular lung water. Crit Care Med 32: 1550–1554

    Article  PubMed  Google Scholar 

  16. Nirmalan M, Willard TM, Edwards DJ, Little RA, Dark PM (2005) Estimation of errors in determining intrathoracic blood volume using the single transpulmonary thermal dilution technique in hypovolemic shock. Anesthesiology 103: 805–812

    Article  PubMed  Google Scholar 

  17. Roch A, Michelet P, Lambert D, et al (2004) Accuracy of the double indicator method for measurement of extravascular lung water depends on the type of acute lung injury. Crit Care Med 32: 811–817

    Article  PubMed  Google Scholar 

  18. Carlile PV, Gray BA (1984) Type of lung injury influences the thermal-dye estimation of extravascular lung water. J Appl Physiol 57: 680–685

    CAS  PubMed  Google Scholar 

  19. Beckett RC, Gray BA (1982) Effect of atelectasis and embolization on extravascular thermal volume of the lung. J Appl Physiol 53: 1614–1619

    CAS  PubMed  Google Scholar 

  20. Allison RC, Parker JC, Duncan CE, Taylor AE (1983) Effect of air embolism on the measurement of extravascular lung thermal volume. J Appl Physiol 54: 943–949

    CAS  PubMed  Google Scholar 

  21. Groeneveld AB, Verheij J (2004) Is pulmonary edema associated with a high extravascular thermal volume? Crit Care Med 32: 899–901

    Article  CAS  PubMed  Google Scholar 

  22. Slutsky RA (1983) Reduction in pulmonary blood volume during positive end-expiratory pressure. J Surg Res 35: 181–187

    Article  CAS  PubMed  Google Scholar 

  23. Carlile PV, Lowery DD, Gray BA (1986) Effect of PEEP and type of injury on thermal-dye estimation of pulmonary edema. J Appl Physiol 60: 22–31

    CAS  PubMed  Google Scholar 

  24. Luecke T, Roth H, Herrmann P, et al (2003) PEEP decreases atelectasis and extravascular lung water but not lung tissue volume in surfactant-washout lung injury. Intensive Care Med 29: 2026–2033

    Article  PubMed  Google Scholar 

  25. Berkowitz DM, Danai PA, Eaton S, Moss M, Martin GS (2008) Accurate characterization of extravascular lung water in acute respiratory distress syndrome. Crit Care Med 36: 1803–1809

    Article  PubMed  Google Scholar 

  26. Phillips CR, Chesnutt MS, Smith SM (2008) Extravascular lung water in sepsis-associated acute respiratory distress syndrome: indexing with predicted body weight improves correlation with severity of illness and survival. Crit Care Med 36: 69–73

    Article  PubMed  Google Scholar 

  27. Lange NR, Schuster DP (1999) The measurement of lung water. Crit Care 3:R19–R24

    Article  PubMed  Google Scholar 

  28. Kunst PW, Vonk Noordegraaf A, Raaijmakers E, et al (1999) Electrical impedance tomography in the assessment of extravascular lung water in noncardiogenic acute respiratory failure. Chest 116: 1695–1702

    Article  CAS  PubMed  Google Scholar 

  29. Groeneveld AB, Verheij J (2006) Extravascular lung water to blood volume ratios as measures of permeability in sepsis-induced ALI/ARDS. Intensive Care Med 32: 1315–1321

    Article  PubMed  Google Scholar 

  30. Combes A, Berneau JB, Luyt CE, Trouillet JL (2004) Estimation of left ventricular systolic function by single transpulmonary thermodilution. Intensive Care Med 30: 1377–1383

    PubMed  Google Scholar 

  31. Monnet X, Teboul JL (2006) Invasive measures of left ventricular preload. Curr Opin Crit Care 12: 235–240

    Article  PubMed  Google Scholar 

  32. Bernard GR, Artigas A, Brigham KL, et al (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149: 818–824

    CAS  PubMed  Google Scholar 

  33. Perkins GD, McAuley DF, Thickett DR, Gao F (2006) The beta-agonist lung injury trial (BALTI): a randomized placebo-controlled clinical trial. Am J Respir Crit Care Med 173: 281–287

    Article  CAS  PubMed  Google Scholar 

  34. Ferguson ND, Meade MO, Hallett DC, Stewart TE (2002) High values of the pulmonary artery wedge pressure in patients with acute lung injury and acute respiratory distress syndrome. Intensive Care Med 28: 1073–1077

    Article  PubMed  Google Scholar 

  35. Martin GS, Eaton S, Mealer M, Moss M (2005) Extravascular lung water in patients with severe sepsis: a prospective cohort study. Crit Care 9:R74–82

    Article  PubMed  Google Scholar 

  36. Michard F, Zarka V, Alaya S (2004) Better characterization of acute lung injury/ARDS using lung water. Chest 125:1166

    Article  PubMed  Google Scholar 

  37. Schuster DP (2007) The search for “objective” criteria of ARDS. Intensive Care Med 33: 400–402

    Article  PubMed  Google Scholar 

  38. Kuzkov VV, Kirov MY, Sovershaev MA, et al (2006) Extravascular lung water determined with single transpulmonary thermodilution correlates with the severity of sepsis-induced acute lung injury. Crit Care Med 34: 1647–1653

    Article  PubMed  Google Scholar 

  39. Wiedemann HP, Wheeler AP, Bernard GR, et al (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354: 2564–2575

    Article  CAS  PubMed  Google Scholar 

  40. Monnet X, Teboul JL (2007) Volume responsiveness. Curr Opin Crit Care 13: 549–553

    Article  PubMed  Google Scholar 

  41. Zeravik J, Pfeiffer UJ (1989) Efficacy of high frequency ventilation combined with volume controlled ventilation in dependency of extravascular lung water. Acta Anaesthesiol Scand 33: 568–574

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Monnet, X., Teboul, JL. (2009). Clinical Utility of Extravascular Lung Water Measurements. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92278-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-92278-2_42

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-92277-5

  • Online ISBN: 978-0-387-92278-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics