Variation in Extravascular Lung Water in ALI/ARDS Patients using Open Lung Strategy

  • F. J. Belda
  • G. Aguilar
  • C. Ferrando


Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are progressive forms of acute respiratory failure occurring as a result of diffuse lung inflammation. This is characterized by damage to the alveolar-capillary barrier producing alterations in permeability and pulmonary edema. The diagnosis of ALI/ARDS is based on the presence of both pulmonary and non-pulmonary risk factors and acute hypoxemia with bilateral pulmonary infiltrates on chest x-ray, not due primarily to left ventricular hypertension [1]. These current American-European Consensus Conference (AECC) definitions for ALI/ARDS, used since 1994, have been questioned over the past few years. The PaO2/FiO2 ratio varies with ventilator settings and should be measured by predetermined standard settings (positive end-expiratory pressure [PEEP] 10 cmH2O and FiO2 0.5) [2]. For the radiographic criteria, not only is there high inter-observer variability, even when used by expert investigators [3], but these criteria have also been shown to be a poor indicator of pulmonary edema. Most importantly, the use of a value for the pulmonary artery occlusion pressure (PAOP) of <18 mmHg to exclude heart failure is of dubious value. Obviously ARDS patients can also suffer from acute heart failure, although this is not the primary cause for the pulmonary edema. In fact, more than 35 % of patients with ALI/ARDS have a PAOP >18 mmHg. On the other hand, 21 – 35 % of patients with the ALI/ARDS criteria have no significant pulmonary edema [4].


Acute Lung Injury Acute Respiratory Distress Syndrome Acute Respiratory Distress Syndrome Patient Recruitment Maneuver Extravascular Lung Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernard GR, Artigas A, Brigham KL, et al (1994) The American-European Consensus Conference on ARDS: definitions, mechanisms, relevant outcomes. Am J Respir Crit Care Med 149: 818–824PubMedGoogle Scholar
  2. 2.
    Villar J, P’erez-M’endez L, L’opez J, et al (2007) An early PEEP/FiO2 trial identifies different degrees of lung injury in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 176: 795–804CrossRefPubMedGoogle Scholar
  3. 3.
    Rubenfeld GD, Caldwell E, Granton J, Hudson LD, Matthay MA (1999) Interobserver variability in applying a radiographic definition for ARDS. Chest 116: 1347–1353CrossRefPubMedGoogle Scholar
  4. 4.
    Berkowitz DM, Danai PA, Eaton S, Moss M, Martin GS (2008) Accurate characterization of extravascular lung water in acute respiratory distress syndrome. Crit Care Med 36: 1803–1809CrossRefPubMedGoogle Scholar
  5. 5.
    Esteban A, Fernandez-Segoviano P, Frutos-Vivar F, et al (2004) Comparison of clinical criteria for the acute respiratory distress syndrome with autopsy findings. Ann Intern Med 141: 440–445PubMedGoogle Scholar
  6. 6.
    Schuster DP (2007) The search for “objective” criteria of ARDS. Intensive Care Med 33: 400–402CrossRefPubMedGoogle Scholar
  7. 7.
    Phua J, Stewart TE, Ferguson ND (2008) Acute respiratory distress syndrome 40 years later: time to revisit its definition. Crit Care Med 36: 2912–2921CrossRefPubMedGoogle Scholar
  8. 8.
    Fernández-Mondejar E, Guerrero López F, Colmenero M (2007) How important is the measurement of extravascular lung water? Curr Opin Crit Care 13: 79–83CrossRefPubMedGoogle Scholar
  9. 9.
    Sakka SG, Ruhi CC, Pfeiffer UJ, et al (2000) Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 26: 180–187CrossRefPubMedGoogle Scholar
  10. 10.
    Lewis FR, Eling VB, Hill SL, et al (1982) The measurement of extravascular lung water by thermal-green dye indicator dilution. Ann NY Acad Sci 384: 393–410.CrossRefGoogle Scholar
  11. 11.
    Saul GM, Feeley TW, Mihn FG (1982) Effect of graded administration of PEEP on lung water in non cardiogenic pulmonary edema. Crit Care Med 10: 667–669.PubMedCrossRefGoogle Scholar
  12. 12.
    Mihn FG, Feeley TW, Rosenthal MH, et al (1982) Measurement of extravascular lung water in dogs using the thermal-green dye indicator dilution method. Anesthesiology 57: 116–122CrossRefGoogle Scholar
  13. 13.
    Colmenero-Ruiz M, Fernández-Mondéjar E, Fernández Sacristán MA, et al (1997) PEEP and low tidal volume reduces extravascular lung water in porcine pulmonary edema. Am J Respir Crit Care Med 155: 964–970PubMedGoogle Scholar
  14. 14.
    Patroniti N, Bellani G, Maggioni E, et al (2005) Measurement of pulmonary edema in patients with acute respiratory distress syndrome. Crit Care Med 33: 2547–2554CrossRefPubMedGoogle Scholar
  15. 15.
    Katzenelson R, Perel A, Berkenstadt H, et al (2004) Accuracy of transpulmonary thermodilution versus gravimetric measurement of extravascular lung water. Crit Care Med 32: 1550–1554CrossRefPubMedGoogle Scholar
  16. 16.
    Kirov MY, Kuzkov VV, Kuklin VN (2004) Extravascular lung water assessed by transpulmonary single thermodilution and postmortem gravimetry in sheep. Crit Care 8: R451–R458CrossRefPubMedGoogle Scholar
  17. 17.
    Rossi P, Wanecek M, Rudehill A, et al (2006) Comparison of a single indicator and gravimetric thecnique for estimation of extravascular lung water in endotoxemic pigs. Crit Care Med 34: 1437–1443CrossRefPubMedGoogle Scholar
  18. 18.
    Kuzkov VV, Kirov M, Waerhaug K, et al (2007) Assessment of current methods quantitating extravascular lung water and pulmonary aeration in inhomogeneus lung injury: an experimental study. Anesteziol Reanimatol 3: 4–9Google Scholar
  19. 19.
    Fernández-Mondejar E, Rivera-Fernández R, García-Delgado M, et al (2005) Small increases in extravascular lung water are accurately detected by transpulmonary thermodilution. J Trauma 59: 1420–1424CrossRefPubMedGoogle Scholar
  20. 20.
    Monnet X, Anguel N, Osman D, Hamzaoui O, Richard C, Teboul JL (2007) Assessing pulmonary permeability by traspulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ARDS. Intensive Care Med 33: 448–453CrossRefPubMedGoogle Scholar
  21. 21.
    Michard F (2007) Bedside assesment of extravascular lung water by dilutions methods: temptations and pitfalls. Crit Care Med 35: 1186–1192CrossRefPubMedGoogle Scholar
  22. 22.
    Martin GS, Eaton S, Mealer M, Moss M (2005) Extravascular lung water in patients with severe sepsis: a prospective cohort study. Crit Care 9:R74–82CrossRefPubMedGoogle Scholar
  23. 23.
    Perkins GD, McAuley DF, Thickett DR, Gao F (2006) The beta-agonist lung injury trial (BALTI): a randomized placebo-controlled trial. Am J Respir Crit Care Med 173: 281–287CrossRefPubMedGoogle Scholar
  24. 24.
    Kuzkov VV, Kirov MY, Sovershaev MA, et al (2006) Extravascular lung water determined with single transpulmonary thermodilution correlates with the severity of sepsis-induced acute lung injury. Crit Care Med 34: 1647–1653CrossRefPubMedGoogle Scholar
  25. 25.
    Phillips CR, Chesnutt MS, Smith SM (2008) Extravascular lung water in sepsis-associated respiratory distress syndrome: indexing with predicted body weight improves correlation with severity of illnes and survival. Crit Care Med 36: 69–73CrossRefPubMedGoogle Scholar
  26. 26.
    The Acute Respiratory Distress Syndrome network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342: 1301–1308CrossRefGoogle Scholar
  27. 27.
    Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: Lessons from experimental studies. Am J Respir Crit Care Med 157: 294–323PubMedGoogle Scholar
  28. 28.
    Brower RG, Morris A, MacIntyre N, et al (2003) Effects of recruitment maneuvers in patients with acute lung injury and acute respiratory distress syndrome ventilated with high positive end-expiratory pressure. Crit Care Med 31: 2592–2597CrossRefPubMedGoogle Scholar
  29. 29.
    Suarez-Sipmann F, Böhm SH, Tusman G (2007) Use of dynamic compliance for open lung positive end-expiratory pressure titration in an experimental study. Crit Care Med 35: 214–221CrossRefPubMedGoogle Scholar
  30. 30.
    Pelosi P, Goldner M, McKibben A, et al (2001) Recruitment and derecruitment during acute respiratory failure: An experimental study. Am J Respir Crit Care Med 164: 122–130PubMedGoogle Scholar
  31. 31.
    Meede MO, Cook DJ, Guyatt GH, et al (2008) ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome. JAMA 299(6):637–645.CrossRefGoogle Scholar
  32. 32.
    Alain M, Jean-Christophe M.R, Bruno V, et al (2008) Positive end-expiratory setting in adults with acute lung injury and acute respiratory distress syndrome. JAMA 299: 646–655CrossRefGoogle Scholar
  33. 33.
    Rimensberger PC, Pristine G, Mullen BM, et al (1999) Lung recruitment during small tidal volume ventilation allows minimal positive end-expiratory pressure without augmenting lung injury. Crit Care Med 27: 1940–1945CrossRefPubMedGoogle Scholar
  34. 34.
    Frank JA, McAuley DF, Gutierrez JA, et al (2005) Differential effects of sustained inflation recruitment maneuvers on alveolar ephitelial and lung endothelial injury. Crit Care Med 33: 254–255CrossRefGoogle Scholar
  35. 35.
    Maybauer D.M, Talke PO, Westphay M, et al (2006) Positive end-expiratory pressure ventilation increases extravascular lung water due to a decrease in lung lymph flow. Anaesth Intensive Care 34: 329–333PubMedGoogle Scholar
  36. 36.
    Demling RH, Staub NC, Edmunds LH Jr (1975) Effect of end-expiratory airway pressure on accumulation of extravascular lung water. J Appl Physiol 38: 907–912PubMedGoogle Scholar
  37. 37.
    Luecke T, Roth H, Herrmann P, et al (2003) PEEP decreases atelectasis and extravascular lung water but not lung tissue volume in surfactant-washout lung injury. Intensive Care Med 29: 2026–2033CrossRefPubMedGoogle Scholar
  38. 38.
    Russel JA, Hoeffel J, Murray JF (1982) Effect of different levels of positive end-expiratory pressure on lung water content. J Appl Physiol 53: 9–15Google Scholar
  39. 39.
    Ruiz-Bailen M, Fernandez-Mondejar E, Hurtado-Ruiz B, et al (1999) Immediate application of positive end-expiratory pressure is more effective than delayed positive end-expiratory pressure to reduce extravascular lung water. Crit Care Med 27: 380–384CrossRefPubMedGoogle Scholar
  40. 40.
    Myers JC, Reilley TE, Cloutier CT (1988) Effect of positive end-expiratory pressure on extravascular lung water in porcine acute respiratory failure. Crit Care Med 16: 52–54CrossRefPubMedGoogle Scholar
  41. 41.
    Verheij J, van Lingen A, Raijmakers PG, et al (2005) Pulmonary abnormalities after cardiac surgery are better explained by atelectasis than by increased permeability oedema. Acta Anaesthesiol Scand 49: 1302–1310CrossRefPubMedGoogle Scholar
  42. 42.
    Groeneveld AB, Verheij J, van den Berg FG, et al (2006) Increased pulmonary capillary permeability and extravascular lung water after major vascular surgery: effect on radiography and ventilatory variables. Eur J Anaesthesiol 23: 36–41CrossRefPubMedGoogle Scholar
  43. 43.
    Szakmany T, Heigl P, Molnar Z (2004) Correlation between extravasuclar lung water and oxygenation in ALI/ARDS patients with septic shock: possible role in development of atelectasis. Anaesth Intensive Care 32: 196–201PubMedGoogle Scholar
  44. 44.
    Chen YM, Yang Y, Qiu HB, et al (2005) Effect of protective ventilation and open lung strategy on extravascular lung water in rabbits with acute respiratory distress syndrome. Chin J Tuberc Respir Dis 28: 615–617Google Scholar
  45. 45.
    . Toth I, Leiner T, Mikor A, Szakmany T, Bogar L, Molnar Z (2007) Hemodynamic and respiratory changes during lung recruitment and descending optimal positive end-expiratory pressure titration in patients with acute respiratory distress syndome. Crit Care Med 35: 787–793CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • F. J. Belda
    • 1
  • G. Aguilar
    • 1
  • C. Ferrando
    • 1
  1. 1.Department of Anesthesiology and Critical CareHospital Clinico Universitario de ValenciaValenciaSpain

Personalised recommendations