Different Approaches to the Analysis of Volumetric Capnography

  • F. Suarez Sipmann
  • S. H. Böhm
  • G. Tusman


Lung mechanics and arterial blood gases are the two most common categories of variables used to assess lung function and to adjust mechanical ventilation. Analyzing the kinetics of carbon dioxide (CO2) is another attractive approach to monitor patients receiving mechanical ventilation. CO2 is eliminated from the blood by diffusing through the alveolar-capillary membrane. By knowing how CO2 behaves on its way to the ambient air, physicians can obtain useful information about ventilation, perfusion, diffusion, and also convection. Despite the fact that capnography has been an essential part of monitoring during general anesthesia surprisingly it has never gained widespread use in intensive care medicine.


Tidal Volume Dead Space Alpha Angle Pulmonary Perfusion Alveolar Dead Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fowler WS (1948) Lung function studies. II. The respiratory dead space. Am J Physiol 154: 405–416PubMedGoogle Scholar
  2. 2.
    Bohr C (1981) Ueber die lungenathmung. Skand Archiv Physiol 2: 236–242Google Scholar
  3. 3.
    Enghoff H (1938) Volumen inefficax. Bemerkungen zur Frage des schädlichen Raumes. Uppsala Läkareforen Forhandl 44: 191–218Google Scholar
  4. 4.
    Nuckton TJ, Alonso JA, Kallet RH, et al (2002) Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med 346: 1281–1286CrossRefPubMedGoogle Scholar
  5. 5.
    Tusman G, Suarez Sipmann F, Böhm SH, et al (2006) Monitoring dead space during recruitment and PEEP titration in an experimental model. Intensive Care Med 32: 1863–1871CrossRefPubMedGoogle Scholar
  6. 6.
    Verschuren F, Liistro G, Coffeng R, et al (2004) Volumetric capnography as a screening test for pulmonary embolism in the emergency department. Chest 125: 841–850CrossRefPubMedGoogle Scholar
  7. 7.
    Tusman G, Areta M, Climente C, et al (2005) Effect of pulmonary perfusion on the slopes of single-breath test of CO2. J Appl Physiol 99: 650–655CrossRefPubMedGoogle Scholar
  8. 8.
    Capek JM, Roy RJ (1988) Non-invasive measurements of cardiac output during partial CO2 rebreathing. IEEE Trans Biomed Eng 35: 653–661CrossRefPubMedGoogle Scholar
  9. 9.
    Peyton PJ, Venkatesan Y, Hood SG, Junor P, May C (2006) Noninvasive, automated and continuous cardiac output monitoring by pulmonary capnodynamics. Anesthesiology 105: 72–80CrossRefPubMedGoogle Scholar
  10. 10.
    Rossier PH, Buhlmann A (1955) The respiratory dead space. Physiol Rev 58: 1840–1848Google Scholar
  11. 11.
    Crawford ABH, Makowska M, Paiva M, Engel LA (1985) Convection-dependent and diffusion-dependent ventilation maldistribution in normal subjects. J Appl Physiol 59: 838–846PubMedGoogle Scholar
  12. 12.
    Engel LA (1983) Gas mixing within acinus of the lung. J Appl Physiol 54: 609–618CrossRefPubMedGoogle Scholar
  13. 13.
    Verbank S, Paiva M (1990) Model simulations of gas mixing and ventilation distribution in the human lung. J Appl Physiol 69: 2269–2279Google Scholar
  14. 14.
    Schwardt JF, Gobran SR, Neufeld GR, Aukburg SJ, Scherer PW (1991) Sensitivity of CO2 washout to changes in acinar structure in a single-path model of lung airways. Ann Biomed Eng 19: 679–697CrossRefPubMedGoogle Scholar
  15. 15.
    Blanch LL, Fernandez R, Saura P, Baigorri F, Artigas A (1999) Relationship between expired capnogram and respiratory system resistance in critically ill patients during total ventilatory support. Eur Respir J 13: 1048–1054CrossRefPubMedGoogle Scholar
  16. 16.
    You B, Peslin R, Duvivier C, et al (1994) Expiratory capnography in asthma: evaluation of various shape indices. Eur Respir J 7: 318–323CrossRefPubMedGoogle Scholar
  17. 17.
    Schwardt JD, Neufeld GR, Baumgardner JE, Scherer PW (1994) Noninvasive recovery of acinar anatomic information from CO2 expirograms. Ann Biomed Eng 22: 293–306CrossRefPubMedGoogle Scholar
  18. 18.
    Ream RS, Screiner MS, Neff JD, et al (1995) Volumetric capnography in children: influence of growth on the alveolar plateau slope. Anesthesiology 82: 64–73CrossRefPubMedGoogle Scholar
  19. 19.
    Folkow B, Pappenheimer IR (1955) Components of the respiratory dead space and their variation with pressure breathing and with bronchoactive drugs. J Appl Physiol 8: 102–110PubMedGoogle Scholar
  20. 20.
    Fletcher R, Jonson B (1981) The concept of deadspace with special reference to the single breath test for carbon dioxide. Br J Anaesth 53: 77–88CrossRefPubMedGoogle Scholar
  21. 21.
    Gomez DM (1965) A physico-mathematical study of lung function in normal subjects and in patients with obstructive pulmonary diseases. Med Thorac 22: 275–294PubMedGoogle Scholar
  22. 22.
    Olsson SG, Fletcher R, Jonson B, Nordstroem L, Prakash O (1980) Clinical studies of gas exchange during ventilatory support — a method using the Siemens-Elema CO2 analyzer. Br J Anaesth 52: 491–498CrossRefPubMedGoogle Scholar
  23. 23.
    Hatch T, Cook KM, Palm PE (1953) Respiratory dead space. J Appl Physiol 5: 341–347PubMedGoogle Scholar
  24. 24.
    Langley F, Even P, Duroux P, Nicolas RL, Cumming G (1975) Ventilatory consequences of unilateral pulmonary artery occlusion. Les colloques de L’Institut National de la Santé et de la Recherche Medicale 51: 209–214Google Scholar
  25. 25.
    Cumming G, Guyatt AR (1982) Alveolar gas mixing efficiency in the human lung. Clin Sci (Lond) 62: 541–547Google Scholar
  26. 26.
    Bowes K. CL, Richardson JD, Cumming G, Horsfield K (1985) Effect of breathing pattern on gas mixing in a model of asymmetrical alveolar ducts. J Appl Physiol 58: 18–26PubMedGoogle Scholar
  27. 27.
    Tang Y, Turner MJ, Baker AB (2007) Systematic errors and susceptibility to noise of four methods for calculating anatomical dead space from the CO2 expirogram. Br J Anaesth 98: 828–834CrossRefPubMedGoogle Scholar
  28. 28.
    Wolff G, Brunner JX, Weibel W, Bowes CL, Muchenberger R, Bertschmann W (1989) Anatomical and series dead space volume: concept and measurement in clinical praxis. Appl Cardiopul Pathophysiol 2: 299–307Google Scholar
  29. 29.
    Åström E, Nicklason L, Drefeldt B, Bajc M, Jonson B (2000) Partitioning of dead space — a method of reference values in the awake human. Eur Respir J 16: 659–664CrossRefPubMedGoogle Scholar
  30. 30.
    Scandurra AG, Maldonado EA, Dai Para AL, Tusman G, Passoni LI (2008) Modelo híbrido para la aproximaci’on funcional de registros de capnografía volumétrica. XIV Congreso Latino Ibero Americano de Investigaci’on de Operaciones (abst)Google Scholar
  31. 31.
    Richards FJ (1989) A flexible growth function for empirical use. J Exp Bot 10: 290–300.CrossRefGoogle Scholar
  32. 32.
    Levenberg, K (1944) A method for the solution of certain problems in least squares. Quart Appl Math 2: 164–168.Google Scholar
  33. 33.
    Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11: 431–441CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • F. Suarez Sipmann
    • 1
  • S. H. Böhm
    • 2
  • G. Tusman
    • 3
  1. 1.Department of Critical CareFundacion Jimenez Diaz-UTEMadridSpain
  2. 2.CSEM Nanomedicine DivisionResearch Centre for NanomedicineLandquartSwitzerland
  3. 3.Department of AnesthesiologyHospital Privado de ComunidadMar del PlataArgentina

Personalised recommendations