Skip to main content

Regional Ventilation Delay Index: Detection of Tidal Recruitment using Electrical Impedance Tomography

  • Conference paper
Intensive Care Medicine

Abstract

Apart from restoring adequate gas exchange, mechanical ventilation should avoid factors known to further aggravate lung injury such as inspiratory overdistension as well as cyclic opening and closing (tidal recruitment) of ventilatory units during tidal ventilation. Both are considered as major risk factors in the pathogenesis of ventilation-associated lung injury (VALI) [13]. The risk of inspiratory overdistension can be reduced by using small tidal volumes and by limiting inspiratory plateau pressures [4]. Low tidal volume ventilation, however, is known to promote end-expiratory alveolar collapse [5, 6], thus, potential for alveolar recruitment and risk for cyclic opening and closing of ventilatory units (tidal recruitment) is increased. To avoid end-expiratory alveolar collapse, an adequate positive end-expiratory pressure (PEEP) is needed [7, 8]. Although experimental investigations have shown that elevated PEEP levels protect from VALI [9, 10], studies comparing high-PEEP and low-PEEP strategies have failed so far to show a consistent improvement in mortality [1113].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Thoracic Society (1999) International Consensus Conferences in Intensive Care Medicine: Ventilator-associated lung injury in ARDS. Am J Respir Crit Care Med 160: 2118–2124

    Google Scholar 

  2. Slutsky AS (1999) Lung injury caused by mechanical ventilation. Chest 116:9S–15S

    Article  CAS  PubMed  Google Scholar 

  3. Uhlig S (2002) Ventilation-induced lung injury and mechanotransduction: stretching it too far? Am J Physiol Lung Cell Mol Physiol 282:L892–L896

    CAS  PubMed  Google Scholar 

  4. The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342: 1301–1308

    Article  Google Scholar 

  5. Chu EK, Whitehead T, Slutsky AS (2004) Effects of cyclic opening and closing at low-and high-volume ventilation on bronchoalveolar lavage cytokines. Crit Care Med 32: 168–174

    Article  CAS  PubMed  Google Scholar 

  6. Kallet RH, Siobal MS, Alonso JA, Warnecke EL, Katz JA, Marks JD (2001) Lung collapse during low tidal volume ventilation in acute respiratory distress syndrome. Respir Care 46: 49–52

    CAS  PubMed  Google Scholar 

  7. Schreiter D, Reske A, Stichert B, et al (2004) Alveolar recruitment in combination with sufficient positive end-expiratory pressure increases oxygenation and lung aeration in patients with severe chest trauma. Crit Care Med 32: 968–975

    Article  PubMed  Google Scholar 

  8. Gattinoni L, Vagginelli F, Chiumello D, Taccone P, Carlesso E (2003) Physiologic rationale for ventilator setting in acute lung injury/acute respiratory distress syndrome patients. Crit Care Med. 31:S300–S304

    Article  PubMed  Google Scholar 

  9. Valenza F, Guglielmi M, Irace M, Porro GA, Sibilla S, Gattinoni L (2003) Positive end-expiratory pressure delays the progression of lung injury during ventilator strategies involving high airway pressure and lung overdistention. Crit Care Med 31: 1993–1998

    Article  PubMed  Google Scholar 

  10. Plotz FB, Slutsky AS, van Vught AJ, Heijnen CJ (2004) Ventilator-induced lung injury and multiple system organ failure: a critical review of facts and hypotheses. Intensive Care Med 30: 1865–1872

    Article  PubMed  Google Scholar 

  11. Brower RG, Lanken PN, MacIntyre N, et al (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351: 327–336

    Article  PubMed  Google Scholar 

  12. Meade MO, Cook DJ, Guyatt GH, et al (2008) Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299: 637–645

    Article  CAS  PubMed  Google Scholar 

  13. Mercat A, Richard JC, Vielle B, et al (2008) Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299: 646–655

    Article  CAS  PubMed  Google Scholar 

  14. Gattinoni L, Caironi P, Cressoni M, et al (2006) Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 354: 1775–1786

    Article  CAS  PubMed  Google Scholar 

  15. Thille AW, Richard JC, Maggiore SM, Ranieri VM, Brochard L (2007) Alveolar recruitment in pulmonary and extrapulmonary acute respiratory distress syndrome: comparison using pressure-volume curve or static compliance. Anesthesiology 106: 212–217

    Article  PubMed  Google Scholar 

  16. Lynch JP, Mhyre JG, Dantzker DR (1979) Influence of cardiac output on intrapulmonary shunt. J Appl Physiol 46: 315–321

    CAS  PubMed  Google Scholar 

  17. Henzler D, Pelosi P, Dembinski R, et al (2005) Respiratory compliance but not gas exchange correlates with changes in lung aeration after a recruitment maneuver: an experimental study in pigs with saline lavage lung injury. Crit Care 9:R471–R482

    Article  PubMed  Google Scholar 

  18. Jonson B, Richard JC, Straus C, Mancebo J, Lemaire F, Brochard L (1999) Pressure-volume curves and compliance in acute lung injury: evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med 159: 1172–1178

    CAS  PubMed  Google Scholar 

  19. Grasso S, Terragni P, Mascia L, et al (2004) Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury. Crit Care Med 32: 1018–1027

    Article  PubMed  Google Scholar 

  20. Hickling KG (1998) The pressure-volume curve is greatly modified by recruitment. A mathematical model of ARDS lungs. Am J Respir Crit Care Med 158: 194–202

    CAS  PubMed  Google Scholar 

  21. Gattinoni L, Caironi P, Pelosi P, Goodman LR (2001) What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med 164: 1701–1711

    CAS  PubMed  Google Scholar 

  22. Rouby JJ, Puybasset L, Nieszkowska A, Lu Q (2003) Acute respiratory distress syndrome: lessons from computed tomography of the whole lung. Crit Care Med 31:S285–S295

    Article  PubMed  Google Scholar 

  23. Brown BH, Barber DC, Seagar AD (1985) Applied potential tomography: possible clinical applications. Clin Phys Physiol Meas 6: 109–121

    Article  CAS  PubMed  Google Scholar 

  24. Wolf GK, Arnold JH (2005) Noninvasive assessment of lung volume: respiratory inductance plethysmography and electrical impedance tomography. Crit Care Med 33:S163–S169

    Article  PubMed  Google Scholar 

  25. Wrigge H, Zinserling J, Muders T, et al (2008) Electrical impedance tomography compared with thoracic computed tomography during a slow inflation maneuver in experimental models of lung injury. Crit Care Med 36: 903–909

    Article  PubMed  Google Scholar 

  26. Luepschen H, Meier T, Grossherr M, Leibecke T, Karsten J, Leonhardt S (2007) Protective ventilation using electrical impedance tomography. Physiol Meas 28:S247–S260

    Article  CAS  PubMed  Google Scholar 

  27. Meier T, Luepschen H, Karsten J, et al (2008) Assessment of regional lung recruitment and derecruitment during a PEEP trial based on electrical impedance tomography. Intensive Care Med 34: 543–550

    Article  PubMed  Google Scholar 

  28. Puls A, Pollok-Kopp B, Wrigge H, Quintel M, Neumann P (2006) Effects of a single-lung recruitment maneuver on the systemic release of inflammatory mediators. Intensive Care Med 32: 1080–1085

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Muders, T., Luepschen, H., Putensen, C. (2009). Regional Ventilation Delay Index: Detection of Tidal Recruitment using Electrical Impedance Tomography. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92278-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-92278-2_39

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-92277-5

  • Online ISBN: 978-0-387-92278-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics