Electrical Impedance Tomography

  • E. L. V. Costa
  • R. Gonzalez Lima
  • M. B. P. Amato


Electrical impedance tomography (EIT) is a non-invasive, radiation-free monitoring tool that allows real-time imaging of ventilation [1, 2, 3]. EIT was first used to monitor respiratory function in 1983 and remains the only bedside method that allows repeated, non-invasive measurements of regional changes in lung volumes [4, 5]. For this reason, EIT has been used as a monitoring tool in a variety of applications in critical care medicine, including monitoring of ventilation distribution [3, 6], assessment of lung overdistension [7] and collapse [8, 9], and detection of pneumothorax [10, 11], among others. In this chapter, we will provide a brief overview of the fundamentals of the EIT technique and review the use of EIT in critical care patients in the light of recent literature.


Electrical Impedance Tomography Respir Crit Regional Lung Lung Recruitment Lung Impedance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Frerichs I, Hahn G, Schiffmann H, et al (1999) Monitoring regional lung ventilation by functional electrical impedance tomography during assisted ventilation. Ann NY Acad Sci 873: 493–505CrossRefPubMedGoogle Scholar
  2. 2.
    Barber DC, Brown BH (1984) Applied potential tomography. J Phys E Sci Instrum 17: 723–733CrossRefGoogle Scholar
  3. 3.
    Victorino JA, Borges JB, Okamoto VN, et al (2004) Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med 169: 791–800CrossRefPubMedGoogle Scholar
  4. 4.
    Frerichs I, Hinz J, Herrmann P, et al (2002) Detection of local lung air content by electrical impedance tomography compared with electron beam CT. J Appl Physiol 93: 660–666PubMedGoogle Scholar
  5. 5.
    Wolf GK Arnold JH (2005) Noninvasive assessment of lung volume: respiratory inductance plethysmography and electrical impedance tomography. Crit Care Med 33: S163–169CrossRefGoogle Scholar
  6. 6.
    Frerichs I, Dargaville PA, Dudykevych T, et al (2003) Electrical impedance tomography: a method for monitoring regional lung aeration and tidal volume distribution? Intensive Care Med 29: 2312–2316CrossRefPubMedGoogle Scholar
  7. 7.
    Adler A, Shinozuka N, Berthiaume Y, et al (1998) Electrical impedance tomography can monitor dynamic hyperinflation in dogs. J Appl Physiol 84: 726–732PubMedGoogle Scholar
  8. 8.
    Lindgren S, Odenstedt H, Olegård C, et al (2007) Regional lung derecruitment after endotracheal suction during volume-or pressure-controlled ventilation: a study using electric impedance tomography. Intensive Care Med 33: 172–180CrossRefPubMedGoogle Scholar
  9. 9.
    Meier T, Luepschen H, Karsten J, et al (2008) Assessment of regional lung recruitment and derecruitment during a peep trial based on electrical impedance tomography. Intensive Care Med 34: 543–550CrossRefPubMedGoogle Scholar
  10. 10.
    Costa ELV, Chaves CN, Gomes S, et al (2008) Real-time detection of pneumothorax using electrical impedance tomography. Crit Care Med 36: 1230–1238CrossRefPubMedGoogle Scholar
  11. 11.
    Hahn G, Just A, Dudykevych T, et al (2006) Imaging pathologic pulmonary air and fluid accumulation by functional and absolute EIT. Physiol Meas 27: S187–198CrossRefGoogle Scholar
  12. 12.
    Bayford RH (2006) Bioimpedance tomography (electrical impedance tomography). Annu Rev Biomed Eng 8: 63–91CrossRefPubMedGoogle Scholar
  13. 13.
    Brown BH (2003) Electrical impedance tomography (EIT): a review. J Med Eng Technol 27: 97–108CrossRefPubMedGoogle Scholar
  14. 14.
    Trigo FC, Gonzalez-Lima R Amato MBP (2004) Electrical impedance tomography using the extended kalman filter. IEEE Trans Biomed Eng 51: 72–81CrossRefPubMedGoogle Scholar
  15. 15.
    Pai C, Mirandola L Scweder R (2005) A black-box back-projection algorithm for electrical impedance tomography. Proceedings of the 18th International Congress of Mechanical Engineering (abst)Google Scholar
  16. 16.
    Breckon WR Pidcock MK (1987) Mathematical aspects of impedance imaging. Clin Phys Physiol Meas 8 (Suppl A):77–84CrossRefPubMedGoogle Scholar
  17. 17.
    Hua P, Woo EJ, Webster JG, et al (1993) Finite element modeling of electrode-skin contact impedance in electrical impedance tomography. IEEE Trans Biomed Eng 40: 335–343CrossRefPubMedGoogle Scholar
  18. 18.
    Harris ND, Suggett AJ, Barber DC, et al (1987) Applications of applied potential tomography (APT) in respiratory medicine. Clin Phys Physiol Meas 8 (Suppl A):155–165CrossRefPubMedGoogle Scholar
  19. 19.
    Adler A, Amyot R, Guardo R, et al (1997) Monitoring changes in lung air and liquid volumes with electrical impedance tomography. J Appl Physiol 83: 1762–1767PubMedGoogle Scholar
  20. 20.
    Gattinoni L, Pelosi P, Vitale G, et al (1991) Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure. Anesthesiology 74: 15–23CrossRefPubMedGoogle Scholar
  21. 21.
    Borges JB, Okamoto VN, Matos GFJ, et al (2006) Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med 174: 268–278.CrossRefPubMedGoogle Scholar
  22. 22.
    Seagar AD, Barber DC, Brown BH (1987) Theoretical limits to sensitivity and resolution in impedance imaging. Clin Phys Physiol Meas 8 (Suppl A): 13–31CrossRefPubMedGoogle Scholar
  23. 23.
    Wrigge H, Zinserling J, Muders T, et al (2008) Electrical impedance tomography compared with thoracic computed tomography during a slow inflation maneuver in experimental models of lung injury. Crit Care Med 36: 903–909CrossRefPubMedGoogle Scholar
  24. 24.
    Deibele JM, Luepschen H, Leonhardt S (2008) Dynamic separation of pulmonary and cardiac changes in electrical impedance tomography. Physiol Meas 29: S1–14CrossRefGoogle Scholar
  25. 25.
    Villar J, Kacmarek RM, Pérez-Méndez L, et al (2006) A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med 34: 1311–1318CrossRefPubMedGoogle Scholar
  26. 26.
    Amato MB, Barbas CS, Medeiros DM, et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338: 347–354CrossRefPubMedGoogle Scholar
  27. 27.
    Suarez-Sipmann F, Böhm SH, Tusman G, et al (2007) Use of dynamic compliance for open lung positive end-expiratory pressure titration in an experimental study. Crit Care Med 35: 214–221CrossRefPubMedGoogle Scholar
  28. 28.
    Hinz J, Moerer O, Neumann P, et al (2006) Regional pulmonary pressure volume curves in mechanically ventilated patients with acute respiratory failure measured by electrical impedance tomography. Acta Anaesthesiol Scand 50: 331–339CrossRefPubMedGoogle Scholar
  29. 29.
    Beraldo MA, Reske A, Borges JB, et al (2006) Peep titration by EIT (electric impedance tomography): correlation with multislice CT. Am J Respir Crit Care Med 173: A64 (abst)CrossRefGoogle Scholar
  30. 30.
    Borges JB, Costa ELV, Beraldo MA, et al (2006) A bedside real-time monitor to detect airspace collapse in patients with ALI/ARDS. Am J Respir Crit Care Med 173: A377 (abst)Google Scholar
  31. 31.
    Luepschen H, Meier T, Grossherr M, et al (2007) Protective ventilation using electrical impedance tomography. Physiol Meas 28: S247–260CrossRefGoogle Scholar
  32. 32.
    Frerichs I, Dargaville PA, van Genderingen H, et al (2006) Lung volume recruitment after surfactant administration modifies spatial distribution of ventilation. Am J Respir Crit Care Med 174: 772–779CrossRefPubMedGoogle Scholar
  33. 33.
    Hinz J, Gehoff A, Moerer O, et al (2007) Regional filling characteristics of the lungs in mechanically ventilated patients with acute lung injury. Eur J Anaesthesiol 24: 414–424.CrossRefPubMedGoogle Scholar
  34. 34.
    Wolf GK, Grychtol B, Frerichs I, et al (2007) Regional lung volume changes in children with acute respiratory distress syndrome during a derecruitment maneuver. Crit Care Med 35: 1972–1978CrossRefPubMedGoogle Scholar
  35. 35.
    Beraldo MA, Costa ELV, Gomes S, et al (2007) Detection of pleural effusion at the bedside by EIT. Am J Respir Crit Care Med 173: A791 (abst)Google Scholar
  36. 36.
    Steinmann D, Stahl CA, Minner J, et al (2008) Electrical impedance tomography to confirm correct placement of double-lumen tube: a feasibility study. Br J Anaesth 101: 411–418CrossRefPubMedGoogle Scholar
  37. 37.
    Smit HJ, Vonk Noordegraaf A, Marcus JT, et al (2004) Determinants of pulmonary perfusion measured by electrical impedance tomography. Eur J Appl Physiol 92: 45–49CrossRefPubMedGoogle Scholar
  38. 38.
    Smit HJ, Handoko ML, Vonk Noordegraaf A, et al (2003) Electrical impedance tomography to measure pulmonary perfusion: is the reproducibility high enough for clinical practice? Physiol Meas 24: 491–499CrossRefPubMedGoogle Scholar
  39. 39.
    Frerichs I, Hinz J, Herrmann P, et al (2002) Regional lung perfusion as determined by electrical impedance tomography in comparison with electron beam CT imaging. IEEE Trans Med Imaging 21: 646–652CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • E. L. V. Costa
    • 1
  • R. Gonzalez Lima
    • 2
  • M. B. P. Amato
    • 1
  1. 1.Respiratory Intensive Care UnitUniversity of Sao Paulo School of MedicineSao Paulo, SPBrazil
  2. 2.Department of Mechanical Engineering Escola PolitecnicaUniversity of Sao PauloSao Paulo, SPBrazil

Personalised recommendations