Bedside Monitoring of Diaphragm Electrical Activity during Mechanical Ventilation

  • C. Sinderby
  • L. Brander
  • J. Beck


Mechanical ventilation is a life saving treatment applied in about one third of all critically ill patients [1, 2]. Although a large proportion of patients receive mechanical ventilation, it is still poorly understood how the ventilator settings should be adjusted to meet the demands of each individual patient. Consequently, many patients suffer from patient-ventilator asynchrony [3], because of a mismatch between the timing of inspiration and expiration, or the delivery of too much or too little assist in relation to the patient’s inspiratory efforts and respiratory load.


Respir Crit Inspiratory Muscle Inspiratory Effort Respiratory Drive Adaptive Support Ventilation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Esteban A, Anzueto A, Alía I, et al (2000) How is mechanical ventilation employed in the intensive care unit? An international utilization review. Am J Respir Crit Care Med 161: 1450–1458PubMedGoogle Scholar
  2. 2.
    Esteban A, Anzueto A, Frutos F, et al (2002) Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA 287: 345–355CrossRefPubMedGoogle Scholar
  3. 3.
    Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L (2006) Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med 32: 1515–1522CrossRefPubMedGoogle Scholar
  4. 4.
    Nilsestuen JO, Hargett KD (2005) Using ventilator graphics to identify patient-ventilator asynchrony. Respir Care 50: 202–234PubMedGoogle Scholar
  5. 5.
    Chao DC, Scheinhorn DJ, Stearn-Hassenpflug M (1997) Patient-ventilator trigger asynchrony in prolonged mechanical ventilation. Chest 112: 1592–1599CrossRefPubMedGoogle Scholar
  6. 6.
    Tejerina E, Frutos-Vivar F, Restrepo MI, et al (2006) Incidence, risk factors, and outcome of ventilator-associated pneumonia. J Crit Care 21: 56–65CrossRefPubMedGoogle Scholar
  7. 7.
    Levine S, Nguyen T, Taylor N, et al (2008) Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358: 1327–1335CrossRefPubMedGoogle Scholar
  8. 8.
    Laghi F, Cattapan SE, Jubran A, et al (2003) Is weaning failure caused by low-frequency fatigue of the diaphragm? Am J Respir Crit Care Med 167: 120–127CrossRefPubMedGoogle Scholar
  9. 9.
    Kress, JP, Pohlman, AS, O’Connor, MF, Hall JB (2000) Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med 342: 1471–1414CrossRefPubMedGoogle Scholar
  10. 10.
    de Wit M, Gennings C, Jenvey WI, Epstein SK (2008) Randomized trial comparing daily interruption of sedation and nursing-implemented sedation algorithm in medical intensive care unit patients. Crit Care 12: R70CrossRefPubMedGoogle Scholar
  11. 11.
    Girard TD, Kress JP, Fuchs BD, et al (2008) Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial. Lancet 371: 126–134CrossRefPubMedGoogle Scholar
  12. 12.
    Bosma K, Ferreyra G, Ambrogio C, et al (2007) Patient-ventilator interaction and sleep in mechanically ventilated patients: pressure support versus proportional assist ventilation. Crit Care Med 35: 1048–1054CrossRefPubMedGoogle Scholar
  13. 13.
    Leung P, Jubran A, Tobin MJ (1997) Comparison of assisted ventilator modes on triggering, patient effort, and dyspnea. Am J Respir Crit Care Med 155: 1940–1948PubMedGoogle Scholar
  14. 14.
    Beck J, Gottfried SB, Navalesi P, et al (2001) Electrical activity of the diaphragm during pressure support ventilation in acute respiratory failure. Am J Respir Crit Care Med 164: 419–424PubMedGoogle Scholar
  15. 15.
    Thille AW, Cabello B, Galia F, Lyazidi A, Brochard L (2008) Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med 34: 1477–1486CrossRefPubMedGoogle Scholar
  16. 16.
    Colombo D, Cammarota G, Bergamaschi V, De Lucia M, Corte FD, Navalesi P (2008) Physiologic response to varying levels of pressure support and neurally adjusted ventilatory assist in patients with acute respiratory failure. Intensive Care Med 34: 2010–2018CrossRefPubMedGoogle Scholar
  17. 17.
    Younes M (1992) Proportional assist ventilation, a new approach to ventilatory support. Theory. Am Rev Respir Dis 145: 114–120PubMedGoogle Scholar
  18. 18.
    Sinderby C, Navalesi P, Beck J, et al (1999) Neural control of mechanical ventilation in respiratory failure. Nat Med 5: 1433–1436CrossRefPubMedGoogle Scholar
  19. 19.
    Dojat M, Harf A, Touchard D, Lemaire F, Brochard L (2000) Clinical evaluation of a computer-controlled pressure support mode. Am J Respir Crit Care Med 161: 1161–1166PubMedGoogle Scholar
  20. 20.
    Brunner JX, Iotti GA (2002) Adaptive Support Ventilation (ASV). Minerva Anestesiol 68: 365–368PubMedGoogle Scholar
  21. 21.
    Lourençco RV, Cherniack NS, Malm JR, Fishman AP (1966) Nervous output from the respiratory center during obstructed breathing. J Appl Physiol 21: 527–533.Google Scholar
  22. 22.
    Sinderby CA, Beck JC, Lindström LH, Grassino AE (1997) Enhancement of signal quality in esophageal recordings of diaphragm EMG. J Appl Physiol 82: 1370–1377PubMedGoogle Scholar
  23. 23.
    Aldrich T, Sinderby C, McKenzie D, Estenne M, Gandevia S (2002) Electrophysiologic techniques for the assessment of respiratory muscle function. Am J Respir Crit Care Med 166: 518–624CrossRefGoogle Scholar
  24. 24.
    Beck J, Sinderby C, Lindström L, Grassino A (1998) Effects of lung volume on diaphragm EMG signal strength during voluntary contractions. J Appl Physiol 85: 1123–1134PubMedGoogle Scholar
  25. 25.
    Sinderby C, Spahija J, Beck J, et al (2001) Diaphragm activation during exercise in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 163: 1637–1641PubMedGoogle Scholar
  26. 26.
    Sinderby C, Beck J, Spahija J, Weinberg J, Grassino A (1998) Voluntary activation of the human diaphragm in health and disease. J Appl Physiol 85: 2146–2158.PubMedGoogle Scholar
  27. 27.
    Nava S, Ceriana P (2005) Patient-ventilator interaction during noninvasive positive pressure ventilation. Respir Care Clin N Am 11: 281–293CrossRefPubMedGoogle Scholar
  28. 28.
    Imanaka H, Nishimura M, Takeuchi M, Kimball WR, Yahagi N, Kumon K (2000) Autotriggering caused by cardiogenic oscillation during flow-triggered mechanical ventilation. Crit Care Med 28: 402–407CrossRefPubMedGoogle Scholar
  29. 29.
    Sinderby C, Brander L, Beck J (2007) Is one fixed level of assist sufficient to mechanically ventilate spontaneously breathing patients? In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine. Springer, Heidelberg, pp 348–357Google Scholar
  30. 30.
    Parthasarathy S, Jubran A, Tobin MJ (1998) Cycling of inspiratory and expiratory muscle groups with the ventilator in airflow limitation. Am J Respir Crit Care Med. 158: 1471–1478PubMedGoogle Scholar
  31. 31.
    Tassaux D, Gainnier M, Battisti A, Jolliet P (2005) Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med 172: 1283–1289.CrossRefPubMedGoogle Scholar
  32. 32.
    Beck J, Spahija J, Sinderby C (2003) Respiratory muscle unloading during mechanical ventilation. In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine. Springer, Heidelberg, pp 280–287Google Scholar
  33. 33.
    Allo JC, Beck JC, Brander L, Brunet F, Slutsky AS, Sinderby CA (2006) Influence of neurally adjusted ventilatory assist and positive end-expiratory pressure on breathing pattern in rabbits with acute lung injury. Crit Care Med 34: 2997–3004PubMedGoogle Scholar
  34. 34.
    Beck J, Brander L, Slutsky AS, Reilly MC, Dunn MS, Sinderby C (2008) Non-invasive neurally adjusted ventilatory assist in rabbits with acute lung injury. Intensive Care Med 34: 316–323CrossRefPubMedGoogle Scholar
  35. 35.
    Sinderby C, Beck J, Spahija J, et al (2007) Inspiratory muscle unloading by neurally adjusted ventilatory assist during maximal inspiratory efforts in healthy subjects. Chest 131: 711–717CrossRefPubMedGoogle Scholar
  36. 36.
    Baydur A, Behrakis PK, Zin WA, Jaeger M, Milic-Emili J (1982) A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis 126: 788–791PubMedGoogle Scholar
  37. 37.
    Sinderby C, Beck J (2008) Proportional assist ventilation and neurally adjusted ventilatory assist — better approaches to patient ventilator synchrony? Clin Chest Med 29: 329–342CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • C. Sinderby
    • 1
  • L. Brander
    • 2
  • J. Beck
    • 3
  1. 1.Department of Critical CareSt Michael’s HospitalTorontoCanada
  2. 2.Department of Intensive CareUniversity Hospital InselspitalBernSwitzerland
  3. 3.Department of PediatricsSt Michael’s HospitalTorontoCanada

Personalised recommendations