Skip to main content

Variable Mechanical Ventilation: Breaking the Monotony

  • Conference paper

Abstract

Healthy biological systems are characterized by intrinsic variability of their function even during conditions of apparent steady state, i.e., conditions that do not require major adaptation to the external environment. The most impressive example is the heart, exhibiting large variability of cardiac rhythm over short and long time scales at rest [1]. The respiratory system behaves similarly, with fluctuations of respiratory rate and/or tidal volumes observed in resting subjects [2, 3]. Such intrinsic variability, however, can be diminished or even abolished in diseased biological systems. For instance, heart rate variability may be impaired in patients with coronary heart disease even before symptoms appear [4]. A decrease of variability in respiratory rate and/or tidal volumes has been also reported in patients with chronic obstructive pulmonary disease (COPD) [5] and in those who failed to wean from mechanical ventilation [6]. In addition, the use of sedative drugs, which is commonly required during mechanical ventilation, may impair the natural variation of the respiratory pattern [7].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ivanov PC, Amaral LAN, Goldberger AL, et al (1999) Multifractality in human heartbeat dynamics. Nature 399: 461–465

    Article  CAS  PubMed  Google Scholar 

  2. Tobin MJ, Mador MJ, Guenther SM, Lodato RF, Sackner MA (1988) Variability of resting respiratory drive and timing in healthy subjects. J Appl Physiol 65: 309–317

    CAS  PubMed  Google Scholar 

  3. Frey U, Silverman M, Barbási AL, Suki B (1998) Irregularities and power law distributions in the breathing pattern in preterm and term infants. J Appl Physiol 85: 789–797

    CAS  PubMed  Google Scholar 

  4. Huikuri HV, Mäkikallio TH (2001) Heart rate variability in ischemic heart disease. Auton Neurosci 90: 95–101

    Article  CAS  PubMed  Google Scholar 

  5. Brack T, Jubran A, Tobin MJ (2002) Dyspnea and decreased variability of breathing in patients with restrictive lung disease. Am J Respir Crit Care Med 165: 1260–1264

    Article  PubMed  Google Scholar 

  6. Wysocki M, Diehl JL, Lefort Y, Derenne JP, Similowski T (2006) Reduced breathing variability as a predictor of unsuccessful patient separation from mechanical ventilation. Crit Care Med 34: 2078–2083

    Article  Google Scholar 

  7. Galletly D, Larsen P (1999) Ventilatory frequency variability in spontaneously breathing anaesthetized subjects. Br J Anaesth 83: 552–563

    CAS  PubMed  Google Scholar 

  8. Goldberger AL (2006) Complex systems. Proc Am Thorac Soc 3: 467–472

    Article  PubMed  Google Scholar 

  9. Goldberger AL, Amaral LAN, Hausdorff JM, Ivanov PC, Peng CK, Stanley HE (2002) Fractal dynamics in physiology: Alterations with disease and aging. Proc Natl Acad Sci USA 99 (Suppl 1): 2466–2472

    Article  PubMed  Google Scholar 

  10. Goldberger AL (1996) Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet 347: 1312–1314

    Article  CAS  PubMed  Google Scholar 

  11. Nelson TR, West BJ, Goldberger AL (1990) The fractal lung: universal and species-related scaling patterns. Experientia 46: 251–254

    Article  CAS  PubMed  Google Scholar 

  12. Boxt LM, Katz J, Liebovitch LS, Jones R, Esser PD, Reid L (1994) Fractal analysis of pulmonary arteries: the fractal dimension is lower in pulmonary hypertension. J Thorac Imaging 9: 8–13

    CAS  PubMed  Google Scholar 

  13. Tsuda A, Rogers RA, Hydon PE, Butler JP (2008) Chaotic mixing deep in the lung. Proc Natl Acad Sci USA 99: 10173–10178

    Article  Google Scholar 

  14. Hughes JM, Rosenzweig DY, Kivitz PB (1970) Site of airway closure in excised dog lungs: histologic demonstration. J Appl Physiol 29: 340–344

    CAS  PubMed  Google Scholar 

  15. dos Santos CC, Slutsky AS (2000) Invited review: mechanisms of ventilator-induced lung injury: a perspective. J Appl Physiol 89: 1645–1655

    PubMed  Google Scholar 

  16. Suki B, Barabási AL, Hantos Z, Peták F, Stanley HE (1994) Avalanches and power-law behavior in lung inflation. Nature 368: 615–618

    Article  CAS  PubMed  Google Scholar 

  17. Wolff G, Eberhard L, Guttmann J, Bertschmann W, Zeravik J, Adolph M (1992) Polymorphous ventilation: A new ventilation concept for distributed time constants. In: Rügheimer E, Mang H, Tchaikowsky K (eds) New aspects on respiratory failure, Springer-Verlag, Berlin, pp 235–252

    Google Scholar 

  18. Lefevre GR, Kowalski SE, Girling LG, Thiessen DB, Mutch WA (1996) Improved arterial oxygenation after oleic acid lung injury in the pig using a computer-controlled mechanical ventilator. Am J Respir Crit Care Med 154: 1567–1572

    CAS  PubMed  Google Scholar 

  19. Suki B, Alencar AM, Sujeer MK, et al (1998) Life-support system benefits from noise. Nature 393: 127–128

    Article  CAS  PubMed  Google Scholar 

  20. Gama de Abreu M, Spieth P, Pelosi P, et al (2008) Noisy pressure support ventilation: a pilot study on a new assisted ventilation mode in experimental lung injury. Crit Care Med 36: 818–827

    Article  PubMed  Google Scholar 

  21. Mutch WAC, Harms S, Lefevre GR, Graham MR, Girling LG, Kowalski SE (2000) Biologically variable ventilation increases arterial oxygenation over that seen with positive end-expiratory pressure alone in a porcine model of acute respiratory distress syndrome. Crit Care Med 28: 2457–2464

    Article  CAS  PubMed  Google Scholar 

  22. Mutch WAC, Lefevre GR, Cheang MS (2001) Biologic variability in mechanical ventilation in a canine oleic acid lung injury model. Am J Respir Crit Care Med 163: 1756–1757

    CAS  PubMed  Google Scholar 

  23. Boker A, Graham MR, Walley KR, et al (2002) Improved arterial oxygenation with biologically variable or fractal ventilation using low tidal volumes in a porcine model of acute respiratory distress syndrome. Am J Respir Crit Care Med 165: 456–462

    PubMed  Google Scholar 

  24. Arold SP, Mora R, Lutchen KR, Ingenito EP, Suki B (2002) Variable tidal volume ventilation improves lung mechanics and gas exchange in a rodent model of acute lung injury. Am J Respir Crit Care Med 165: 366–371

    PubMed  Google Scholar 

  25. Funk DJ, Graham MR, Girling LG, et al (2004) A comparison of biologically variable ventilation to recruitment manoeuvres in a porcine model of acute lung injury. Respir Res 5: 22

    Article  PubMed  Google Scholar 

  26. Gama de Abreu M, Spieth P, Hoehn C, et al (2007) Chaotic variation of tidal volume improves different protective mechanical ventilation strategies. Am J Respir Crit Care Med 175: A788 (abst)

    Google Scholar 

  27. Spieth P, Meissner C, Kasper M, Koch T, Gama de Abreu M (2007) Chaotic variation of tidal volumes adds further benefit to the open lung approach in experimental lung injury. Eur J Anaesthesiol 24 (Suppl):146 (abst)

    Article  Google Scholar 

  28. Bellardine CL, Hoffman AM, Tsai L, et al (2006) Comparison of variable and conventional ventilation in a sheep saline lavage lung injury model. Crit Care Med 34: 439–445

    Article  PubMed  Google Scholar 

  29. Thammanomai A, Hueser E, Majumdar A, Bartolák-Suki E, Suki, B (2008) Design of a new variable-ventilation method optimized for lung recruitment in mice. J Appl Physiol 104: 1329–1340

    Article  PubMed  Google Scholar 

  30. Nam AJ, Brower RG, Fessler HE, Simon BA (2000) Biologic variability in mechanical ventilation rate and tidal volume does not improve oxygenation or lung mechanics in canine oleic acid lung injury. Am J Respir Crit Care Med 161: 1797–1804

    CAS  PubMed  Google Scholar 

  31. Mutch WAC, Buchman TG, Girling L, Walker E, McManus BM, Graham MR (2007) Biologically variable ventilation improves gas exchange and respiratory mechanics in a model of severe bronchospasm. Crit Care Med 35: 1749–1755

    Article  PubMed  Google Scholar 

  32. Mutch WAC, Harms S, Graham MR, Kowalski SE, Girling LG, Lefevre GR (2000) Biologically variable or naturally noisy mechanical ventilation recruits atelectatic lung. Am J Respir Crit Care Med 162: 319–323

    CAS  PubMed  Google Scholar 

  33. McMullen MC, Girling LG, Graham MR, Mutch WAC (2006) Biologically variable ventilation improves oxygenation and respiratory mechanics during one-lung ventilation. Anesthesiology 105: 91–97

    Article  PubMed  Google Scholar 

  34. Boker A, Haberman CJ, Girling L, et al (2004) Variable ventilation improves perioperative lung function in patients undergoing abdominal aortic aneurysmectomy. Anesthesiology 100: 608–616

    Article  PubMed  Google Scholar 

  35. Taccone P, Polli F, Chiumello D, Vespro V, Gattinoni L (2008) Effects of variable ventilation during lung protective mechanical ventilation strategy in ALI/ARDS patients. Am J Respir Crit Care Med 177: A765 (abst)

    Google Scholar 

  36. Varelmann D, Wrigge H, Zinserling J, Muders T, Hering R, Putensen C (2005) Proportional assist versus pressure support ventilation in patients with acute respiratory failure: cardiorespiratory responses to artificially increased ventilatory demand. Crit Care Med 33: 1968–1975

    Article  PubMed  Google Scholar 

  37. Gama de Abreu M, Spieth P, Pelosi P, et al (2008) Noisy pressure support ventilation: A pilot study on a new assisted ventilation mode in experimental lung injury. Crit Care Med 36: 818–827

    Article  PubMed  Google Scholar 

  38. Gama de Abreu M, Spieth PM, Carvalho AR, Pelosi P, Koch T (2008) Pressure support ventilation is superior to pressure controlled ventilation in experimental lung injury and can be further improved by noise. Am J Respir Crit Care Med 177: A385 (abst)

    Google Scholar 

  39. Spieth PM, Carvalho AR, Güldner A, et al (2009) Effects of different levels of pressure support variability in experimental lung injury. Anesthesiology (in press)

    Google Scholar 

  40. Brewster JF, Graham MR, Mutch WAC (2005) Convexity, Jensen’s inequality and benefits of noisy mechanical ventilation. J R Soc Interface 2: 393–396

    Article  PubMed  Google Scholar 

  41. Wirtz HR, Dobbs LG (1990) Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells. Science 30: 1266–1269

    Article  Google Scholar 

  42. Arold SP, Suki B, Alencar AM, Lutchen KR, Ingenito EP (2003) Variable ventilation induces endogenous surfactant release in normal guinea pigs. Am J Physiol — Lung Cell Mol Physiol 285: L370–L375

    CAS  PubMed  Google Scholar 

  43. Mutch WAC, Graham MR, Girling LG, Brewster JF (2005) Fractal ventilation enhances respiratory sinus arrhythmia. Respir Res 6: 41

    Article  PubMed  Google Scholar 

  44. Brimioulle S, Julien V, Gust R, Kozlowski JK, Naeije R, Schuster DP (2002) Importance of hypoxic vasoconstriction in maintaining oxygenation during acute lung injury. Crit Care Med 30: 874–880

    Article  PubMed  Google Scholar 

  45. Pelosi P, Bottino N, Chiumello D, et al (2003) Sigh in supine and prone position during acute respiratory distress syndrome. Am J Respir Crit Care Med 167: 521–527

    Article  PubMed  Google Scholar 

  46. Patroniti N, Foti G, Cortinovis B, et al (2002) Sigh improves gas exchange and lung volume in patients with acute respiratory distress syndrome undergoing pressure support ventilation. Anesthesiology 96: 788–794

    Article  PubMed  Google Scholar 

  47. The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342: 1301–1308

    Article  Google Scholar 

  48. Oeckler RA, Hubmayr RD (2007) Ventilator-associated lung injury: a search for better therapeutic targets. Eur Respir J 30: 1216–1226

    Article  CAS  PubMed  Google Scholar 

  49. Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury. Am J Respir Crit Care Med 157: 294–323

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gama de Abreu, M., Spieth, P.M., Pelosi, P. (2009). Variable Mechanical Ventilation: Breaking the Monotony. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92278-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-92278-2_35

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-92277-5

  • Online ISBN: 978-0-387-92278-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics