Advertisement

Variable Mechanical Ventilation: Breaking the Monotony

  • M. Gama de Abreu
  • P. M. Spieth
  • P. Pelosi

Abstract

Healthy biological systems are characterized by intrinsic variability of their function even during conditions of apparent steady state, i.e., conditions that do not require major adaptation to the external environment. The most impressive example is the heart, exhibiting large variability of cardiac rhythm over short and long time scales at rest [1]. The respiratory system behaves similarly, with fluctuations of respiratory rate and/or tidal volumes observed in resting subjects [2, 3]. Such intrinsic variability, however, can be diminished or even abolished in diseased biological systems. For instance, heart rate variability may be impaired in patients with coronary heart disease even before symptoms appear [4]. A decrease of variability in respiratory rate and/or tidal volumes has been also reported in patients with chronic obstructive pulmonary disease (COPD) [5] and in those who failed to wean from mechanical ventilation [6]. In addition, the use of sedative drugs, which is commonly required during mechanical ventilation, may impair the natural variation of the respiratory pattern [7].

Keywords

Mechanical Ventilation Tidal Volume Respir Crit Respiratory Sinus Arrhythmia Control Mechanical Ventilation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ivanov PC, Amaral LAN, Goldberger AL, et al (1999) Multifractality in human heartbeat dynamics. Nature 399: 461–465CrossRefPubMedGoogle Scholar
  2. 2.
    Tobin MJ, Mador MJ, Guenther SM, Lodato RF, Sackner MA (1988) Variability of resting respiratory drive and timing in healthy subjects. J Appl Physiol 65: 309–317PubMedGoogle Scholar
  3. 3.
    Frey U, Silverman M, Barbási AL, Suki B (1998) Irregularities and power law distributions in the breathing pattern in preterm and term infants. J Appl Physiol 85: 789–797PubMedGoogle Scholar
  4. 4.
    Huikuri HV, Mäkikallio TH (2001) Heart rate variability in ischemic heart disease. Auton Neurosci 90: 95–101CrossRefPubMedGoogle Scholar
  5. 5.
    Brack T, Jubran A, Tobin MJ (2002) Dyspnea and decreased variability of breathing in patients with restrictive lung disease. Am J Respir Crit Care Med 165: 1260–1264CrossRefPubMedGoogle Scholar
  6. 6.
    Wysocki M, Diehl JL, Lefort Y, Derenne JP, Similowski T (2006) Reduced breathing variability as a predictor of unsuccessful patient separation from mechanical ventilation. Crit Care Med 34: 2078–2083CrossRefGoogle Scholar
  7. 7.
    Galletly D, Larsen P (1999) Ventilatory frequency variability in spontaneously breathing anaesthetized subjects. Br J Anaesth 83: 552–563PubMedGoogle Scholar
  8. 8.
    Goldberger AL (2006) Complex systems. Proc Am Thorac Soc 3: 467–472CrossRefPubMedGoogle Scholar
  9. 9.
    Goldberger AL, Amaral LAN, Hausdorff JM, Ivanov PC, Peng CK, Stanley HE (2002) Fractal dynamics in physiology: Alterations with disease and aging. Proc Natl Acad Sci USA 99 (Suppl 1): 2466–2472CrossRefPubMedGoogle Scholar
  10. 10.
    Goldberger AL (1996) Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet 347: 1312–1314CrossRefPubMedGoogle Scholar
  11. 11.
    Nelson TR, West BJ, Goldberger AL (1990) The fractal lung: universal and species-related scaling patterns. Experientia 46: 251–254CrossRefPubMedGoogle Scholar
  12. 12.
    Boxt LM, Katz J, Liebovitch LS, Jones R, Esser PD, Reid L (1994) Fractal analysis of pulmonary arteries: the fractal dimension is lower in pulmonary hypertension. J Thorac Imaging 9: 8–13PubMedGoogle Scholar
  13. 13.
    Tsuda A, Rogers RA, Hydon PE, Butler JP (2008) Chaotic mixing deep in the lung. Proc Natl Acad Sci USA 99: 10173–10178CrossRefGoogle Scholar
  14. 14.
    Hughes JM, Rosenzweig DY, Kivitz PB (1970) Site of airway closure in excised dog lungs: histologic demonstration. J Appl Physiol 29: 340–344PubMedGoogle Scholar
  15. 15.
    dos Santos CC, Slutsky AS (2000) Invited review: mechanisms of ventilator-induced lung injury: a perspective. J Appl Physiol 89: 1645–1655PubMedGoogle Scholar
  16. 16.
    Suki B, Barabási AL, Hantos Z, Peták F, Stanley HE (1994) Avalanches and power-law behavior in lung inflation. Nature 368: 615–618CrossRefPubMedGoogle Scholar
  17. 17.
    Wolff G, Eberhard L, Guttmann J, Bertschmann W, Zeravik J, Adolph M (1992) Polymorphous ventilation: A new ventilation concept for distributed time constants. In: Rügheimer E, Mang H, Tchaikowsky K (eds) New aspects on respiratory failure, Springer-Verlag, Berlin, pp 235–252Google Scholar
  18. 18.
    Lefevre GR, Kowalski SE, Girling LG, Thiessen DB, Mutch WA (1996) Improved arterial oxygenation after oleic acid lung injury in the pig using a computer-controlled mechanical ventilator. Am J Respir Crit Care Med 154: 1567–1572PubMedGoogle Scholar
  19. 19.
    Suki B, Alencar AM, Sujeer MK, et al (1998) Life-support system benefits from noise. Nature 393: 127–128CrossRefPubMedGoogle Scholar
  20. 20.
    Gama de Abreu M, Spieth P, Pelosi P, et al (2008) Noisy pressure support ventilation: a pilot study on a new assisted ventilation mode in experimental lung injury. Crit Care Med 36: 818–827CrossRefPubMedGoogle Scholar
  21. 21.
    Mutch WAC, Harms S, Lefevre GR, Graham MR, Girling LG, Kowalski SE (2000) Biologically variable ventilation increases arterial oxygenation over that seen with positive end-expiratory pressure alone in a porcine model of acute respiratory distress syndrome. Crit Care Med 28: 2457–2464CrossRefPubMedGoogle Scholar
  22. 22.
    Mutch WAC, Lefevre GR, Cheang MS (2001) Biologic variability in mechanical ventilation in a canine oleic acid lung injury model. Am J Respir Crit Care Med 163: 1756–1757PubMedGoogle Scholar
  23. 23.
    Boker A, Graham MR, Walley KR, et al (2002) Improved arterial oxygenation with biologically variable or fractal ventilation using low tidal volumes in a porcine model of acute respiratory distress syndrome. Am J Respir Crit Care Med 165: 456–462PubMedGoogle Scholar
  24. 24.
    Arold SP, Mora R, Lutchen KR, Ingenito EP, Suki B (2002) Variable tidal volume ventilation improves lung mechanics and gas exchange in a rodent model of acute lung injury. Am J Respir Crit Care Med 165: 366–371PubMedGoogle Scholar
  25. 25.
    Funk DJ, Graham MR, Girling LG, et al (2004) A comparison of biologically variable ventilation to recruitment manoeuvres in a porcine model of acute lung injury. Respir Res 5: 22CrossRefPubMedGoogle Scholar
  26. 26.
    Gama de Abreu M, Spieth P, Hoehn C, et al (2007) Chaotic variation of tidal volume improves different protective mechanical ventilation strategies. Am J Respir Crit Care Med 175: A788 (abst)Google Scholar
  27. 27.
    Spieth P, Meissner C, Kasper M, Koch T, Gama de Abreu M (2007) Chaotic variation of tidal volumes adds further benefit to the open lung approach in experimental lung injury. Eur J Anaesthesiol 24 (Suppl):146 (abst)CrossRefGoogle Scholar
  28. 28.
    Bellardine CL, Hoffman AM, Tsai L, et al (2006) Comparison of variable and conventional ventilation in a sheep saline lavage lung injury model. Crit Care Med 34: 439–445CrossRefPubMedGoogle Scholar
  29. 29.
    Thammanomai A, Hueser E, Majumdar A, Bartolák-Suki E, Suki, B (2008) Design of a new variable-ventilation method optimized for lung recruitment in mice. J Appl Physiol 104: 1329–1340CrossRefPubMedGoogle Scholar
  30. 30.
    Nam AJ, Brower RG, Fessler HE, Simon BA (2000) Biologic variability in mechanical ventilation rate and tidal volume does not improve oxygenation or lung mechanics in canine oleic acid lung injury. Am J Respir Crit Care Med 161: 1797–1804PubMedGoogle Scholar
  31. 31.
    Mutch WAC, Buchman TG, Girling L, Walker E, McManus BM, Graham MR (2007) Biologically variable ventilation improves gas exchange and respiratory mechanics in a model of severe bronchospasm. Crit Care Med 35: 1749–1755CrossRefPubMedGoogle Scholar
  32. 32.
    Mutch WAC, Harms S, Graham MR, Kowalski SE, Girling LG, Lefevre GR (2000) Biologically variable or naturally noisy mechanical ventilation recruits atelectatic lung. Am J Respir Crit Care Med 162: 319–323PubMedGoogle Scholar
  33. 33.
    McMullen MC, Girling LG, Graham MR, Mutch WAC (2006) Biologically variable ventilation improves oxygenation and respiratory mechanics during one-lung ventilation. Anesthesiology 105: 91–97CrossRefPubMedGoogle Scholar
  34. 34.
    Boker A, Haberman CJ, Girling L, et al (2004) Variable ventilation improves perioperative lung function in patients undergoing abdominal aortic aneurysmectomy. Anesthesiology 100: 608–616CrossRefPubMedGoogle Scholar
  35. 35.
    Taccone P, Polli F, Chiumello D, Vespro V, Gattinoni L (2008) Effects of variable ventilation during lung protective mechanical ventilation strategy in ALI/ARDS patients. Am J Respir Crit Care Med 177: A765 (abst)Google Scholar
  36. 36.
    Varelmann D, Wrigge H, Zinserling J, Muders T, Hering R, Putensen C (2005) Proportional assist versus pressure support ventilation in patients with acute respiratory failure: cardiorespiratory responses to artificially increased ventilatory demand. Crit Care Med 33: 1968–1975CrossRefPubMedGoogle Scholar
  37. 37.
    Gama de Abreu M, Spieth P, Pelosi P, et al (2008) Noisy pressure support ventilation: A pilot study on a new assisted ventilation mode in experimental lung injury. Crit Care Med 36: 818–827CrossRefPubMedGoogle Scholar
  38. 38.
    Gama de Abreu M, Spieth PM, Carvalho AR, Pelosi P, Koch T (2008) Pressure support ventilation is superior to pressure controlled ventilation in experimental lung injury and can be further improved by noise. Am J Respir Crit Care Med 177: A385 (abst)Google Scholar
  39. 39.
    Spieth PM, Carvalho AR, Güldner A, et al (2009) Effects of different levels of pressure support variability in experimental lung injury. Anesthesiology (in press)Google Scholar
  40. 40.
    Brewster JF, Graham MR, Mutch WAC (2005) Convexity, Jensen’s inequality and benefits of noisy mechanical ventilation. J R Soc Interface 2: 393–396CrossRefPubMedGoogle Scholar
  41. 41.
    Wirtz HR, Dobbs LG (1990) Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells. Science 30: 1266–1269CrossRefGoogle Scholar
  42. 42.
    Arold SP, Suki B, Alencar AM, Lutchen KR, Ingenito EP (2003) Variable ventilation induces endogenous surfactant release in normal guinea pigs. Am J Physiol — Lung Cell Mol Physiol 285: L370–L375PubMedGoogle Scholar
  43. 43.
    Mutch WAC, Graham MR, Girling LG, Brewster JF (2005) Fractal ventilation enhances respiratory sinus arrhythmia. Respir Res 6: 41CrossRefPubMedGoogle Scholar
  44. 44.
    Brimioulle S, Julien V, Gust R, Kozlowski JK, Naeije R, Schuster DP (2002) Importance of hypoxic vasoconstriction in maintaining oxygenation during acute lung injury. Crit Care Med 30: 874–880CrossRefPubMedGoogle Scholar
  45. 45.
    Pelosi P, Bottino N, Chiumello D, et al (2003) Sigh in supine and prone position during acute respiratory distress syndrome. Am J Respir Crit Care Med 167: 521–527CrossRefPubMedGoogle Scholar
  46. 46.
    Patroniti N, Foti G, Cortinovis B, et al (2002) Sigh improves gas exchange and lung volume in patients with acute respiratory distress syndrome undergoing pressure support ventilation. Anesthesiology 96: 788–794CrossRefPubMedGoogle Scholar
  47. 47.
    The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342: 1301–1308CrossRefGoogle Scholar
  48. 48.
    Oeckler RA, Hubmayr RD (2007) Ventilator-associated lung injury: a search for better therapeutic targets. Eur Respir J 30: 1216–1226CrossRefPubMedGoogle Scholar
  49. 49.
    Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury. Am J Respir Crit Care Med 157: 294–323PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • M. Gama de Abreu
    • 1
  • P. M. Spieth
    • 1
  • P. Pelosi
    • 2
  1. 1.Department of Anesthesiology and Intensive CareUniversity Hospital Carl Gustav CarusDresdenGermany
  2. 2.Department of Ambient Health and Safety Service of Anesthesia B Ospedale di CircoloUniversity of InsubriaVareseItaly

Personalised recommendations