Advertisement

Extracorporeal Membrane Oxygenation for Cardiac and Pulmonary Indications: Improving Patient Safety

  • R. Kopp
  • S. Leonhardt
  • S. Kowalewski
Conference paper

Abstract

Extracorporeal membrane oxygenation (ECMO) is used for patients with the most severe acute respiratory distress syndrome (ARDS) or for cardiopulmonary assist due to cardiogenic shock, cardiac arrest, or low cardiac output after cardiac surgery. Most centers use modified cardiopulmonary bypass (CPB) devices without automated control or safety concepts (Fig. 1), although there is no continuous observation by a perfusionist on the intensive care unit (ICU).
Fig. 1.

Example of an ECMO system.

Keywords

Extracorporeal Membrane Oxygenation Blood Pump Safety Concept Plasma Leakage ECMO Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kopp R, Dembinski R, Kuhlen R (2006) Role of extracorporeal lung assist in the treatment of acute respiratory failure. Minerva Anestesiol 72: 587–595PubMedGoogle Scholar
  2. 2.
    Doll N, Kiaii B, Borger M, et al (2004) Five-year results of 219 consecutive patients treated with extracorporeal membrane oxygenation for refractory postoperative cardiogenic shock. Ann Thorac Surg 77: 151–157CrossRefPubMedGoogle Scholar
  3. 3.
    Combes A, Leprince P, Luyt CE, et al (2008) Outcomes and long-term quality-of-life of patients supported by extracorporeal membrane oxygenation for refractory cardiogenic shock. Crit Care Med 36: 1404–1411CrossRefPubMedGoogle Scholar
  4. 4.
    Hemmila MR, Rowe SA, Boules TN, et al (2004) Extracorporeal life support for severe acute respiratory distress syndrome in adults. Ann Surg 240: 595–605PubMedGoogle Scholar
  5. 5.
    Murphy JA, Savage CM, Alpard SK, Deyo DJ, Jayroe JB, Zwischenberger JB (2001) Low-dose versus high-dose heparinization during arteriovenous carbon dioxide removal. Perfusion 16: 460–468PubMedGoogle Scholar
  6. 6.
    Meyns B, Vercaemst L, Vandezande E, Bollen H, Vlasselaers D (2005) Plasma leakage of oxygenators in ECMO depends on the type of oxygenator and on patient variables. Int J Artif Organs 28: 30–34PubMedGoogle Scholar
  7. 7.
    Eash HJ, Jones HM, Hattler BG, Federspiel WJ (2004) Evaluation of plasma resistant hollow fiber membranes for artificial lungs. ASAIO J 50: 491–497CrossRefPubMedGoogle Scholar
  8. 8.
    Khoshbin E, Roberts N, Harvey C, et al (2005) Poly-methyl pentene oxygenators have improved gas exchange capability and reduced transfusion requirements in adult extracorporeal membrane oxygenation. ASAIO J 51: 281–287CrossRefPubMedGoogle Scholar
  9. 9.
    Lewandowski K (2000) Extracorporeal membrane oxygenation for severe acute respiratory failure. Crit Care 4: 156–168CrossRefPubMedGoogle Scholar
  10. 10.
    Arlt M, Philipp A, Zimmermann M, et al (2008) First experiences with a new miniaturised life support system for mobile percutaneous cardiopulmonary bypass. Resuscitation 77: 345–350CrossRefPubMedGoogle Scholar
  11. 11.
    Cattaneo G, Strauss A, Reul H (2004) Compact intra-and extracorporeal oxygenator developments. Perfusion 19: 251–255CrossRefPubMedGoogle Scholar
  12. 12.
    Conrad SA, Brown EG, Grier LR, et al (1998) Arteriovenous extracorporeal carbon dioxide removal: a mathematical model and experimental evaluation. ASAIO J 44: 267–277PubMedCrossRefGoogle Scholar
  13. 13.
    Bein T, Weber F, Philipp A, et al (2006) A new pumpless extracorporeal interventional lung assist in critical hypoxemia/hypercapnia. Crit Care Med 34: 1372–1377CrossRefPubMedGoogle Scholar
  14. 14.
    Gobel C, Arvand A, Rau G, et al (2002) A new rotary blood pump for versatile extracorporeal circulation: the DeltaStream. Perfusion 17: 373–382CrossRefPubMedGoogle Scholar
  15. 15.
    Hexamer M, Misgeld B, Prenger-Berninghoff A, et al (2004) Automatic control of the extra-corporal bypass: system analysis, modelling and evaluation of different control modes. Biomed Tech (Berl) 49: 316–321CrossRefGoogle Scholar
  16. 16.
    Misgeld BJ, Werner J, Hexamer M (2005) Robust and self-tuning blood flow control during extracorporeal circulation in the presence of system parameter uncertainties. Med Biol Eng Comput 43: 589–598Google Scholar
  17. 17.
    Samuels LE, Holmes EC, Garwood P, Ferdinand F (2005) Initial experience with the Abiomed AB5000 ventricular assist device system. Ann Thorac Surg 80: 309–312CrossRefPubMedGoogle Scholar
  18. 18.
    Giridharan GA, Pantalos GM, Gillars KJ, Koenig SC, Skliar M (2004) Physiologic control of rotary blood pumps: an in vitro study. ASAIO J 50: 403–409CrossRefPubMedGoogle Scholar
  19. 19.
    Giridharan GA, Skliar M (2006) Physiological control of blood pumps using intrinsic pump parameters: a computer simulation study. Artif Organs 30: 301–307CrossRefPubMedGoogle Scholar
  20. 20.
    Mehlhorn U, Brieske M, Fischer UM, et al (2005) LIFEBRIDGE: a portable, modular, rapidly available “plug-and-play” mechanical circulatory support system. Ann Thorac Surg 80: 1887–1892CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • R. Kopp
    • 1
  • S. Leonhardt
    • 2
  • S. Kowalewski
    • 3
  1. 1.Department of Surgical Intensive CareRWTH Aachen UniversityAachenGermany
  2. 2.Medical Information TechnologyRWTH Aachen UniversityAachenGermany
  3. 3.Computer Science 11RWTH Aachen UniversityAachenGermany

Personalised recommendations