Lung Proteomics in Intensive Care

  • E. Kipnis
  • K. Hansen


The advent of routinely available genomics and sequencing of the human genome, among others, associated with advances in technology previously limited to biochemical research, and in bioinformatics has brought the new field of proteomics within the reach of the life sciences and even clinical research. Important hypotheses are increasingly being generated in lung disease by biomarker identification from screening of clinical samples. However, proteomics, ideally suited for biomarker discovery, is only just emerging as a field of research in intensive care and has, to date, mostly been applied to serumin studies of sepsis [1, 2, 3, 4, 5]. The purpose of this chapter is to overview the rationale, basics, methods, pitfalls, applications, and future directions for lung proteomics in intensive care.


Acute Lung Injury Severe Acute Respiratory Syndrome Exhale Breath Condensate Severe Acute Respiratory Syndrome Epithelial Line Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buhimschi CS, Bhandari V, Hamar BD, et al (2007) Proteomic profiling of the amniotic fluid to detect inflammation, infection, and neonatal sepsis. PLoS Med 4:e18CrossRefPubMedGoogle Scholar
  2. 2.
    Crouser ED, Julian MW, Huff JE, Mandich DV, Green-Church KB (2006) A proteomic analysis of liver mitochondria during acute endotoxemia. Intensive Care Med 32: 1252–1262CrossRefPubMedGoogle Scholar
  3. 3.
    Holly MK, Dear JW, Hu X, et al (2006) Biomarker and drug-target discovery using proteomics in a new rat model of sepsis-induced acute renal failure. Kidney Int 70: 496–506PubMedGoogle Scholar
  4. 4.
    Kalenka A, Feldmann RE Jr, Otero K, Maurer MH, Waschke KF, Fiedler F (2006) Changes in the serum proteome of patients with sepsis and septic shock. Anesth Analg 103: 1522–1526CrossRefPubMedGoogle Scholar
  5. 5.
    Ren Y, Wang J, Xia J, et al (2007) The alterations of mouse plasma proteins during septic development. J Proteome Res 6: 2812–2821CrossRefPubMedGoogle Scholar
  6. 6.
    Manolio T (2003) Novel risk markers and clinical practice. N Engl J Med 349: 1587–1589CrossRefPubMedGoogle Scholar
  7. 7.
    Ackland GL, Mythen MG (2007) Novel biomarkers in critical care: utility or futility? Crit Care 11:175CrossRefPubMedGoogle Scholar
  8. 8.
    Becker KL, Snider R, Nylen ES (2008) Procalcitonin assay in systemic inflammation, infection, and sepsis: clinical utility and limitations. Crit Care Med 36: 941–952CrossRefPubMedGoogle Scholar
  9. 9.
    McLean AS, Huang SJ, Hyams S, et al (2007) Prognostic values of B-type natriuretic peptide in severe sepsis and septic shock. Crit Care Med 35: 1019–1026CrossRefPubMedGoogle Scholar
  10. 10.
    Garcia JG, Moreno Vinasco L (2006) Genomic insights into acute inflammatory lung injury. Am J Physiol Lung Cell Mol Physiol 291:L1113–1117CrossRefPubMedGoogle Scholar
  11. 11.
    Meyer NJ, Garcia JG (2007) Wading into the genomic pool to unravel acute lung injury genetics. Proc Am Thorac Soc 4: 69–76CrossRefPubMedGoogle Scholar
  12. 12.
    Nonas SA, Finigan JH, Gao L, Garcia JG (2005) Functional genomic insights into acute lung injury: role of ventilators and mechanical stress. Proc Am Thorac Soc 2: 188–194CrossRefPubMedGoogle Scholar
  13. 13.
    Poly WJ (1997) Nongenetic variation, genetic-environmental interactions and altered gene expression. III. Posttranslational modifications. Comp Biochem Physiol A Physiol 118: 551–572CrossRefPubMedGoogle Scholar
  14. 14.
    Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19: 1720–1730PubMedGoogle Scholar
  15. 15.
    Witze ES, Old WM, Resing KA, Ahn NG (2007) Mapping protein post-translational modifications with mass spectrometry. Nat Methods 4: 798–806CrossRefPubMedGoogle Scholar
  16. 16.
    Bowler RP, Ellison MC, Reisdorph N (2006) Proteomics in pulmonary medicine. Chest 130: 567–574CrossRefPubMedGoogle Scholar
  17. 17.
    Hirsch J, Hansen KC, Burlingame AL, Matthay MA (2004) Proteomics: current techniques and potential applications to lung disease. Am J Physiol Lung Cell Mol Physiol 287:L1–23CrossRefPubMedGoogle Scholar
  18. 18.
    Sandra K, Moshir M, D’Hondt F, Verleysen K, Kas K, Sandra P (2008) Highly efficient peptide separations in proteomics Part 1. Unidimensional high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 866: 48–63CrossRefPubMedGoogle Scholar
  19. 19.
    Jiang X, Ye M, Zou H (2008) Technologies and methods for sample pretreatment in efficient proteome and peptidome analysis. Proteomics 8: 686–705CrossRefPubMedGoogle Scholar
  20. 20.
    Bowler RP, Duda B, Chan ED, et al (2004) Proteomic analysis of pulmonary edema fluid and plasma in patients with acute lung injury. Am J Physiol Lung Cell Mol Physiol 286: L1095–1104CrossRefPubMedGoogle Scholar
  21. 21.
    Feng NH, Hacker A, Effros RM (1992) Solute exchange between the plasma and epithelial lining fluid of rat lungs. J Appl Physiol 72: 1081–1089PubMedGoogle Scholar
  22. 22.
    Plymoth A, Lofdahl CG, Ekberg-Jansson A, et al (2003) Human bronchoalveolar lavage: biofluid analysis with special emphasis on sample preparation. Proteomics 3: 962–972CrossRefPubMedGoogle Scholar
  23. 23.
    Diamandis EP (2004) Analysis of serum proteomic patterns for early cancer diagnosis: drawing attention to potential problems. J Natl Cancer Inst 96: 353–356PubMedCrossRefGoogle Scholar
  24. 24.
    Garber K (2004) Debate rages over proteomic patterns. J Natl Cancer Inst 96: 816–818PubMedGoogle Scholar
  25. 25.
    Zhang Z, Chan DW (2005) Cancer proteomics: in pursuit of “true” biomarker discovery. Cancer Epidemiol Biomarkers Prev 14: 2283–2286CrossRefPubMedGoogle Scholar
  26. 26.
    Domon B, Aebersold R (2006) Challenges and opportunities in proteomics data analysis. Mol Cell Proteomics 5: 1921–1926CrossRefPubMedGoogle Scholar
  27. 27.
    Nesvizhskii AI, Aebersold R (2005) Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics 4: 1419–1440CrossRefPubMedGoogle Scholar
  28. 28.
    Candiano G, Bruschi M, Pedemonte N, et al. (2007) Proteomic analysis of the airway surface liquid: modulation by proinflammatory cytokines. Am J Physiol Lung Cell Mol Physiol 292:L185–198CrossRefPubMedGoogle Scholar
  29. 29.
    Signor L, Tigani B, Beckmann N, Falchetto R, Stoeckli M (2004) Two-dimensional electrophoresis protein profiling and identification in rat bronchoalveolar lavage fluid following allergen and endotoxin challenge. Proteomics 4: 2101–2110CrossRefPubMedGoogle Scholar
  30. 30.
    Hirsch J, Niemann CU, Hansen KC, et al (2008) Alterations in the proteome of pulmonary alveolar type II cells in the rat after hepatic ischemia-reperfusion. Crit Care Med 36: 1846–1854CrossRefPubMedGoogle Scholar
  31. 31.
    Schnapp LM, Donohoe S, Chen J, et al (2006) Mining the acute respiratory distress syndrome proteome: identification of the insulin-like growth factor (IGF)/IGF-binding protein-3 pathway in acute lung injury. Am J Pathol 169: 86–95CrossRefPubMedGoogle Scholar
  32. 32.
    Gray RD, MacGregor G, Noble D, et al (2008) Sputum proteomics in inflammatory and suppurative respiratory diseases. Am J Respir Crit Care Med 178: 444–452CrossRefPubMedGoogle Scholar
  33. 33.
    de Torre C, Ying SX, Munson PJ, Meduri GU, Suffredini AF (2006) Proteomic analysis of inflammatory biomarkers in bronchoalveolar lavage. Proteomics 6: 3949–3957CrossRefPubMedGoogle Scholar
  34. 34.
    Bozinovski S, Cross M, Vlahos R, et al (2005) S100A8 chemotactic protein is abundantly increased, but only a minor contributor to LPS-induced, steroid resistant neutrophilic lung inflammation in vivo. J Proteome Res 4: 136–145CrossRefPubMedGoogle Scholar
  35. 35.
    Chang DW, Hayashi S, Gharib SA, et al (2008) Proteomic and computational analysis of bronchoalveolar proteins during the course of the acute respiratory distress syndrome. Am J Respir Crit Care Med 178: 701–709CrossRefPubMedGoogle Scholar
  36. 36.
    Ishizaka A, Watanabe M, Yamashita T, et al (2001) New bronchoscopic microsample probe to measure the biochemical constituents in epithelial lining fluid of patients with acute respiratory distress syndrome. Crit Care Med 29: 896–898CrossRefPubMedGoogle Scholar
  37. 37.
    Kipnis E, Hansen K, Sawa T, et al (2008) Proteomic analysis of undiluted lung epithelial lining fluid. Chest 134: 338–345CrossRefPubMedGoogle Scholar
  38. 38.
    Dudek SM, Garcia JG (2001) Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol 91: 1487–1500PubMedGoogle Scholar
  39. 39.
    Gessner C, Hammerschmidt S, Kuhn H, et al (2003) Exhaled breath condensate nitrite and its relation to tidal volume in acute lung injury. Chest 124: 1046–1052CrossRefPubMedGoogle Scholar
  40. 40.
    Sack U, Scheibe R, Wotzel M, et al (2006) Multiplex analysis of cytokines in exhaled breath condensate. Cytometry A 69: 169–172PubMedGoogle Scholar
  41. 41.
    Walsh BK, Mackey DJ, Pajewski T, Yu Y, Gaston BM, Hunt JF (2006) Exhaled-breath condensate pH can be safely and continuously monitored in mechanically ventilated patients. Respir Care 51: 1125–1131PubMedGoogle Scholar
  42. 42.
    Griese M, Noss J, von Bredow C (2002) Protein pattern of exhaled breath condensate and saliva. Proteomics 2: 690–696CrossRefPubMedGoogle Scholar
  43. 43.
    Gessner C, Dihazi H, Brettschneider S, et al (2008) Presence of cytokeratins in exhaled breath condensate of mechanical ventilated patients. Respir Med 102: 299–306CrossRefPubMedGoogle Scholar
  44. 44.
    Clermont G (2007) Modeling longitudinal data in acute illness. Crit Care 11:152CrossRefPubMedGoogle Scholar
  45. 45.
    Nick JA, Coldren CD, Geraci MW, et al (2004) Recombinant human activated protein C reduces human endotoxin-induced pulmonary inflammation via inhibition of neutrophil chemotaxis. Blood 104: 3878–3885CrossRefPubMedGoogle Scholar
  46. 46.
    Li SQ, Qi HW, Wu CG, et al (2007) Comparative proteomic study of acute pulmonary embolism in a rat model. Proteomics 7: 2287–2299CrossRefPubMedGoogle Scholar
  47. 47.
    Ventura CL, Higdon R, Kolker E, Skerrett SJ, Rubens CE (2008) Host airway proteins interact with Staphylococcus aureus during early pneumonia. Infect Immun 76: 888–898CrossRefPubMedGoogle Scholar
  48. 48.
    Nelsestuen GL, Martinez MB, Hertz MI, Savik K, Wendt CH (2005) Proteomic identification of human neutrophil alpha-defensins in chronic lung allograft rejection. Proteomics 5: 1705–1713CrossRefPubMedGoogle Scholar
  49. 49.
    Yip TT, Cho WC, Cheng WW, et al (2007) Application of ProteinChip array profiling in serum biomarker discovery for patients suffering from severe acute respiratory syndrome. Methods Mol Biol 382: 313–331CrossRefPubMedGoogle Scholar
  50. 50.
    Malmstrom J, Lee H, Aebersold R (2007) Advances in proteomic workflows for systems biology. Curr Opin Biotechnol 18: 378–384CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • E. Kipnis
    • 1
  • K. Hansen
    • 2
  1. 1.Department of Surgical Intensive Care Hôpital Huriez Centre Hospitalier RégionalUniversitaire de LilleLilleFrance
  2. 2.Cancer Center Proteomics CoreUniversity of Colorado DenverAuroraUSA

Personalised recommendations