Advertisement

Intrathoracic Pressure Regulation for the Treatment of Hypotension

  • I. Cinel
  • A. Metzger
  • R. P. Dellinger
Conference paper

Abstract

Intrathoracic pressure regulation therapy is based upon the physiological principles of the inspiratory impedance threshold device which was developed to increase the return of venous blood back to the heart for treatment of a number of different clinical conditions associated with clinically significant hypotension, including cardiac arrest [1, 2, 3, 4, 5, 6, 7, 8, 9]. Intrathoracic pressure regulation therapy works by modulating pressures inside the thorax to augment circulation in states of low blood pressure. This technology was first used in the setting of cardiopulmonary resuscitation (CPR). In the non-spontaneously breathing patient, by harnessing the chest wall recoil with a device that prevents air from entering the lungs each time the chest re-expands after a chest compression, an impedance threshold device (ResQPOD®, Advanced Circulatory Systems, Minneapolis, MN) lowers intrathoracic pressures, enhancing blood return to the heart while lowering intracranial pressures (drop in internal jugular vein pressure). In spontaneously breathing patients, inspiration through a differently configured impedance threshold device (ResQGard®) lowers intrathoracic pressures and similarly enhances cardiac preload and lowers intracranial pressures. Both mechanisms contribute to increases in cerebral perfusion during CPR and in spontaneously breathing patients. Based upon collaborative research with the National Aeronautics and Space Administration (NASA) and the United States Army Institute for Surgical Research, the impedance threshold device has recently been recommended in spontaneously breathing patients for treatment of hypotension due to multiple potential causes, including blood loss, intradialytic hypotension, perioperative hypotension, orthostatic hypotension, and hypotension associated with labor and delivery [10, 11, 12, 13, 14, 15, 16].

Keywords

Cardiac Arrest Cardiopulmonary Resuscitation Mean Arterial Blood Pressure Positive Pressure Ventilation Intrathoracic Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lurie K, Voelckel W, Plaisance P, et al (2000) Use of an inspiratory impedance threshold valve during cardiopulmonary resuscitation: a progress report. Resuscitation 44: 219–230CrossRefPubMedGoogle Scholar
  2. 2.
    Lurie KG, Coffeen P, Shultz J, McKnite S, Detloff B, Mulligan KA (1995) Improving active compression-decompression cardiopulmonary resuscitation with an inspiratory impedance valve. Circulation 91: 1629–1632PubMedGoogle Scholar
  3. 3.
    Lurie KG, Mulligan KA, McKnite S, Detloff B, Lindstrom P, Lindner KH (1998) Optimizing standard cardiopulmonary resuscitation with an inspiratory impedance threshold valve. Chest 113: 1084–1090CrossRefPubMedGoogle Scholar
  4. 4.
    Lurie KG, Voelckel WG, Zielinski T, et al (2001) Improving standard cardiopulmonary resuscitation with an inspiratory impedance threshold valve in a porcine model of cardiac arrest. Anesth Analg 93: 649–655CrossRefPubMedGoogle Scholar
  5. 5.
    Lurie KG, Zielinski T, McKnite S, Aufderheide T, Voelckel W (2002) Use of an inspiratory impedance valve improves neurologically intact survival in a porcine model of ventricular fibrillation. Circulation 105: 124–129CrossRefPubMedGoogle Scholar
  6. 6.
    Lurie KG, Zielinski TM, McKnite SH, et al (2004) Treatment of hypotension in pigs with an inspiratory impedance threshold device: a feasibility study. Crit Care Med 32: 1555–1562CrossRefPubMedGoogle Scholar
  7. 7.
    Plaisance P, Lurie KG, Payen D (2000) Inspiratory impedance during active compressiondecompression cardiopulmonary resuscitation: a randomized evaluation in patients in cardiac arrest. Circulation 101: 989–994PubMedGoogle Scholar
  8. 8.
    Samniah N, Voelckel WG, Zielinski TM, et al (2003) Feasibility and effects of transcutaneous phrenic nerve stimulation combined with an inspiratory impedance threshold in a pig model of hemorrhagic shock. Crit Care Med 31: 1197–1202CrossRefPubMedGoogle Scholar
  9. 9.
    Sigurdsson G, Yannopoulos D, McKnite SH, et al (2006) Effects of an inspiratory impedance threshold device on blood pressure and short term survival in spontaneously breathing hypovolemic pigs. Resuscitation 68: 399–404CrossRefPubMedGoogle Scholar
  10. 10.
    Convertino VA, Cooke WH, Lurie KG (2005) Inspiratory resistance as a potential treatment for orthostatic intolerance and hemorrhagic shock. Aviat Space Environ Med 76: 319–325PubMedGoogle Scholar
  11. 11.
    Convertino VA, Ratliff DA, Crissey J, Doerr DF, Idris AH, Lurie KG (2005) Effects of inspiratory impedance on hemodynamic responses to a squat-stand test in human volunteers: implications for treatment of orthostatic hypotension. Eur J Appl Physiol 94: 392–399CrossRefPubMedGoogle Scholar
  12. 12.
    Convertino VA, Ratliff DA, Ryan KL, et al (2004) Effects of inspiratory impedance on the carotid-cardiac baroreflex response in humans. Clin Auton Res 14: 240–248CrossRefPubMedGoogle Scholar
  13. 13.
    Convertino VA, Ratliff DA, Ryan KL, et al (2004) Hemodynamics associated with breathing through an inspiratory impedance threshold device in human volunteers. Crit Care Med 32 (Suppl 9): S381–386CrossRefPubMedGoogle Scholar
  14. 14.
    Marino BS, Yannopoulos D, Sigurdsson G, et al (2004) Spontaneous breathing through an inspiratory impedance threshold device augments cardiac index and stroke volume index in a pediatric porcine model of hemorrhagic hypovolemia. Crit Care Med 32 (Suppl 9): S398–405CrossRefPubMedGoogle Scholar
  15. 15.
    Melby DP, Lu F, Sakaguchi S, et al (2007) Increased impedance to inspiration ameliorates hemodynamic changes associated with movement to upright posture in orthostatic hypotension: a randomized blinded pilot study. Heart Rhythm 4: 128–135CrossRefPubMedGoogle Scholar
  16. 16.
    Walcott GP, Killingsworth CR, Smith WM, Ideker RE (2002) Biphasic waveform external defibrillation thresholds for spontaneous ventricular fibrillation secondary to acute ischemia. J Am Coll Cardiol 39: 359–365CrossRefPubMedGoogle Scholar
  17. 17.
    Aufderheide TP, Pirrallo RG, Provo TA, et al (2005) Clinical evaluation of an inspiratory impedance threshold device during standard cardiopulmonary resuscitation in patients with out-of-hospital cardiac arrest. Crit Care Med 33: 734–740CrossRefPubMedGoogle Scholar
  18. 18.
    Lurie KG, Barnes TA, Zielinski TM, McKnite SH (2003) Evaluation of a prototypic inspiratory impedance threshold valve designed to enhance the efficiency of cardiopulmonary resuscitation. Respir Care 48: 52–57PubMedGoogle Scholar
  19. 19.
    Pirrallo RG, Aufderheide TP, Provo TA, et al (2005) Effect of an inspiratory impedance threshold device on hemodynamics during conventional manual cardiopulmonary resuscitation. Resuscitation 66: 13–20CrossRefPubMedGoogle Scholar
  20. 20.
    Plaisance P, Lurie KG, Vicaut E, et al (2004) Evaluation of an impedance threshold device in patients receiving active compression-decompression cardiopulmonary resuscitation for out of hospital cardiac arrest. Resuscitation 61: 265–271CrossRefPubMedGoogle Scholar
  21. 21.
    Plaisance P, Soleil C, Lurie KG, et al (2005) Use of an inspiratory impedance threshold device on a facemask and endotracheal tube to reduce intrathoracic pressures during the decompression phase of active compression-decompression cardiopulmonary resuscitation. Crit Care Med 33: 990–994CrossRefPubMedGoogle Scholar
  22. 22.
    Raedler C, Voelckel WG, Wenzel V, et al (2002) Vasopressor response in a porcine model of hypothermic cardiac arrest is improved with active compression-decompression cardiopulmonary resuscitation using the inspiratory impedance threshold valve. Anesth Analg 95: 1496–1502CrossRefPubMedGoogle Scholar
  23. 23.
    Wolcke BB, Mauer DK, Schoefmann MF, et al (2003) Comparison of standard cardiopulmonary resuscitation versus the combination of active compression-decompression cardiopulmonary resuscitation and an inspiratory impedance threshold device for out-of-hospital cardiac arrest. Circulation 108: 2201–2205CrossRefPubMedGoogle Scholar
  24. 24.
    Yannopoulos D, Sigurdsson G, McKnite S, et al (2004) Reducing ventilation frequency combined with an inspiratory impedance device improves CPR efficiency in swine model of cardiac arrest. Resuscitation 61: 75–82CrossRefPubMedGoogle Scholar
  25. 25.
    Yannopoulos D, Tang W, Roussos C, et al (2005) Reducing ventilation frequency during cardiopulmonary resuscitation in a porcine model of cardiac arrest. Respir Care 50: 628–635PubMedGoogle Scholar
  26. 26.
    American Heart Association (2005) Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 112 (Suppl 24): IV1–203Google Scholar
  27. 27.
    Aufderheide T, Birnbaum M, Lick C, et al (2007) A tale of seven EMS systems: an impedance threshold device and improved CPR techniques double survival rates after out-of-hospital cardiac arrest. Circulation 116: II–936Google Scholar
  28. 28.
    Yannopoulos D, Nadkarni VM, McKnite SH, et al (2005) Intrathoracic pressure regulator during continuous chest-compression advanced cardiac resuscitation improves vital organ perfusion pressures in a porcine model of cardiac arrest. Circulation 112: 803–811CrossRefPubMedGoogle Scholar
  29. 29.
    Yannopoulos D, McKnite S, Metzger A, Lurie KG (2007) Intrathoracic pressure regulation improves 24-hour survival in a porcine model of hypovolemic shock. Anesth Analg 104: 157–162CrossRefPubMedGoogle Scholar
  30. 30.
    Bircher N, Safar P (1985) Cerebral preservation during cardiopulmonary resuscitation. Crit Care Med 13: 185–190PubMedCrossRefGoogle Scholar
  31. 31.
    Cinel I, Dellinger RP (2006) Current treatment of severe sepsis. Curr Infect Dis Rep 8: 358–365CrossRefPubMedGoogle Scholar
  32. 32.
    Cinel I, Dellinger RP (2007) Advances in pathogenesis and management of sepsis. Curr Opin Infect Dis 20: 345–352CrossRefPubMedGoogle Scholar
  33. 33.
    Cinel I, Opal S (2009) Molecular biology of inflammation and sepsis: A primer. Crit Care Med 37: 291–304CrossRefPubMedGoogle Scholar
  34. 34.
    Treziack S, Cinel I, Dellinger RP, et al (2008) Resuscitating the microcirculation in severe sepsis and septic shock: Emerging concepts, challenges, and future directions. Acad Emerg Med 15: 1–15CrossRefGoogle Scholar
  35. 35.
    Dellinger RP, Levy MM, Carlet JM, et al (2008) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 36: 296–327CrossRefPubMedGoogle Scholar
  36. 36.
    Dellinger RP, Levy MM, Carlet JM, et al (2008) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med 34: 17–60CrossRefPubMedGoogle Scholar
  37. 37.
    Goldfarb RD, Glock D, Johnson K, et al (1998) Randomized, blinded, placebo-controlled trial of tissue factor pathway inhibitor in porcine septic shock. Shock 10: 258–264CrossRefPubMedGoogle Scholar
  38. 38.
    Goldfarb RD, Dellinger RP, Parrillo JE (2005) Porcine models of severe sepsis: emphasis on porcine peritonitis. Shock 24 (Suppl 1): 75–81CrossRefPubMedGoogle Scholar
  39. 39.
    Cinel I, Goldfarb R, Metzger A, et al (2009) Intrathoracic pressure regulation stimulates cardiac index in porcine peritonitis. Crit Care Med (abst, in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • I. Cinel
    • 1
  • A. Metzger
    • 1
  • R. P. Dellinger
    • 1
  1. 1.Department of Critical CareCooper University HospitalCamdenUSA

Personalised recommendations