Impact of Hydroxyethyl Starch on Renal Function

  • G. Marx
  • L. Hüter
  • T. Schuerholz
Conference paper


Adequate volume replacement to restore and maintain circulating plasma volume appears to be fundamental to improve organ perfusion and nutritive microcirculatory flow in critically ill patients [1]. A variety of pharmaceutical preparations are available that can be used to replace or compensate for lost extracellular fluids in different clinical settings, including colloid and crystalloid solutions. Circulatory stability following fluid resuscitation is usually achieved at the expense of tissue edema formation, which may significantly influence vital organ function. The question of which type of solution should be used as volume replacement remains controversial [2]. Clinically, colloids are frequently used for volume replacement when attempting to maintain or improve tissue perfusion in patients experiencing infection, sepsis, trauma, shock, or surgical stress [3]. Compared to crystalloids, colloids have the advantage of maintenance of an increased colloid osmotic pressure (COP). Thus, fluid is retained in the intravascular space, even in the presence of increased permeability, thereby minimizing edema formation and improving oxygen delivery and organ function [4, 5].


Severe Sepsis Hydroxyethyl Starch Volume Replacement Colloid Osmotic Pressure Renal Adverse Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boldt J (2000) Volume therapy in the intensive care patient — we are still confused, but. Intensive Care Med 26: 1181–1192CrossRefPubMedGoogle Scholar
  2. 2.
    Marx G (2003) Fluid therapy in sepsis with capillary leakage. Eur J Anaesthesiol 20: 429–442CrossRefPubMedGoogle Scholar
  3. 3.
    Groeneveld AB (2000) Albumin and artificial colloids in fluid management: where does the clinical evidence of their utility stand? Crit Care 4:S16–20CrossRefPubMedGoogle Scholar
  4. 4.
    Carlson RW, Rattan S, Haupt M (1990) Fluid resuscitation in conditions of increased permeability. Anesth Rev 17 (Suppl 3):14Google Scholar
  5. 5.
    Rackow EC, Falk JL, Fein IA, et al (1983) Fluid resuscitation in circulatory shock: a comparison of the cardiorespiratory effects of albumin, hetastarch, and saline solutions in patients with hypovolemic and septic shock. Crit Care Med 11: 839–850CrossRefPubMedGoogle Scholar
  6. 6.
    Davidson IJ (2006) Renal impact of fluid management with colloids: a comparative review. Eur J Anaesthesiol 23: 721–738CrossRefPubMedGoogle Scholar
  7. 7.
    Madjdpour C, Thyes C, Buclin T, et al (2007) Novel starches: single-dose pharmacokinetics and effects on blood coagulation. Anesthesiology 106: 132–143CrossRefPubMedGoogle Scholar
  8. 8.
    von Roten I, Madjdpour C, Frascarolo P, et al (2006) Molar substitution and C2/C6 ratio of hydroxyethyl starch: influence on blood coagulation. Br J Anaesth 96: 455–463CrossRefGoogle Scholar
  9. 9.
    Madjdpour C, Dettori N, Frascarolo P, et al (2005) Molecular weight of hydroxyethyl starch: is there an effect on blood coagulation and pharmacokinetics? Br J Anaesth 94: 569–576CrossRefPubMedGoogle Scholar
  10. 10.
    Treib J, Haass A, Pindur G, Grauer MT, Wenzel E, Schimrigk K (1996) All medium starches are not the same: influence of the degree of hydroxyethyl substitution of hydroxyethyl starch on plasma volume, hemorrheologic conditions, and coagulation. Transfusion 36: 450–455CrossRefPubMedGoogle Scholar
  11. 11.
    Waitzinger J, Bepperling F, Pabst G, Opitz J (2003) Hydroxyethyl starch (HES) [130/0.4], a new HES specification: pharmacokinetics and safety after multiple infusions of 10 % solution in healthy volunteers. Drugs R D 4: 149–157CrossRefPubMedGoogle Scholar
  12. 12.
    Jesch F, Hubner G, Zumtobel V, Zimmermann M, Messmer K (1979) Hydroxyethyl starch (HAS 450/0.7) in human plasma and liver. Course of concentration and histological changes. Infusionsther Klin Ernahr 6: 112–117PubMedGoogle Scholar
  13. 13.
    Leuschner J, Opitz J, Winkler A, Scharpf R, Bepperling F (2003) Tissue storage of 14C-labelled hydroxyethyl starch (HES) 130/0.4 and HES 200/0.5 after repeated intravenous administration to rats. Drugs R D 4: 331–338CrossRefPubMedGoogle Scholar
  14. 14.
    Auwerda JJ, Leebeek FW, Wilson JH, van Diggelen OP, Lam KH, Sonneveld P (2006) Acquired lysosomal storage caused by frequent plasmapheresis procedures with hydroxyethyl starch. Transfusion 46: 1705–1711CrossRefPubMedGoogle Scholar
  15. 15.
    Sirtl C, Laubenthal H, Zumtobel V, Kraft D, Jurecka W (1999) Tissue deposits of hydroxyethyl starch (HES): dose-dependent and time-related. Br J Anaesth 82: 510–515PubMedGoogle Scholar
  16. 16.
    Kimme P, Jannsen B, Ledin T, Gupta A, Vegfors M (2001) High incidence of pruritus after large doses of hydroxyethyl starch (HES) infusions. Acta Anaesthesiol Scand 45: 686–689CrossRefPubMedGoogle Scholar
  17. 17.
    Lehmann GB, Asskali F, Boll M, et al (2007) HES 130/0.42 shows less alteration of pharmacokinetics than HES 200/0.5 when dosed repeatedly. Br J Anaesth 98: 635–644CrossRefPubMedGoogle Scholar
  18. 18.
    Lehmann G, Marx G, Forster H (2007) Bioequivalence comparison between hydroxyethyl starch 130/0.42/6:1 and hydroxyethyl starch 130/0.4/9:1. Drugs R D 8: 229–240CrossRefPubMedGoogle Scholar
  19. 19.
    Stander S, Szepfalusi Z, Bohle B, et al (2001) Differential storage of hydroxyethyl starch (HES) in the skin: an immunoelectron-microscopical long-term study. Cell Tissue Res 304: 261–269CrossRefPubMedGoogle Scholar
  20. 20.
    Jamal R, Ghannoum M, Naud J-F, Turgeon P-P, Leblanc M (2008) Permanent renal failure induced by pentastarch. Nephrol Dial Transplant Plus 5: 322–325Google Scholar
  21. 21.
    Legendre C, Thervet E, Page B, Percheron A, Noel LH, Kreis H (1993) Hydroxyethylstarch and osmotic-nephrosis-like lesions in kidney transplantation. Lancet 342: 248–249CrossRefPubMedGoogle Scholar
  22. 22.
    Cittanova ML, Leblanc I, Legendre C, Mouquet C, Riou B, Coriat P (1996) Effect of hydroxyethylstarch in brain-dead kidney donors on renal function in kidney-transplant recipients. Lancet 348: 1620–1622CrossRefPubMedGoogle Scholar
  23. 23.
    Coronel B, Mercatello A, Colon S, Martin X, Moskovtschenko J (1996) Hydroxyethylstarch and osmotic nephrosis-like lesions in kidney transplants. Lancet 348:1595Google Scholar
  24. 24.
    Deman A, Peeters P, Sennesael J (1999) Hydroxyethyl starch does not impair immediate renal function in kidney transplant recipients: a retrospective, multicentre analysis. Nephrol Dial Transplant 14: 1517–1520CrossRefPubMedGoogle Scholar
  25. 25.
    Blasco V, Leone M, Antonini F, Geissler A, Albanese J, Martin C (2008) Comparison of the novel hydroxyethylstarch 130/0.4 and hydroxyethylstarch 200/0.6 in brain-dead donor resuscitation on renal function after transplantation. Br J Anaesth 100: 504–508CrossRefPubMedGoogle Scholar
  26. 26.
    Wittlinger M, De Conno E, Schläpfer M, Spahn DR, Beck-Schimmer B (2008) Effect of different HES preparations (HES 130/0.42; HES 200/0.5) on activated proximal tubular epithelial cells in vitro. Eur J Anaesthesiol 25 (Suppl 44):173 (abst)Google Scholar
  27. 27.
    Hauet T, Faure JP, Baumert H, et al (1998) Influence of different colloids on hemodynamic and renal functions: comparative study in an isolated perfused pig kidney model. Transplant Proc 30: 2796–2797CrossRefPubMedGoogle Scholar
  28. 28.
    Barron J (2000) Pharmacology of crystalloids and colloids. In: Transfusion Medicine and Alternative to Blood Transfusion. R&J-Editions Medicales, Paris, pp 123–137Google Scholar
  29. 29.
    Chinitz JL, Kim KE, Onesti G, Swartz C (1971) Pathophysiology and prevention of dextran-40-induced anuria. J Lab Clin Med 77: 76–87PubMedGoogle Scholar
  30. 30.
    Hueter L, Simon T, Weinmann L, Marx G (2008) Osmotic nephrosis is not the exclusive HES associated phenomenon but occurs also after Ringers lactate infusion in an isolated renal perfusion model. Eur J Anaesthesiol 25 (Suppl 44):165–166 (abst)Google Scholar
  31. 31.
    Hueter L, Simon T, Weinmann L, Marx G (2008) HES200/0.5 induces more renal macrophage infiltration than HES 130/0.42 in an isolated renal perfusion model. Crit Care 12 (Suppl 2): S90 (abst)CrossRefGoogle Scholar
  32. 32.
    Boldt J, Brenner T, Lehmann A, Lang J, Kumle B, Werling C (2003) Influence of two different volume replacement regimens on renal function in elderly patients undergoing cardiac surgery: comparison of a new starch preparation with gelatin. Intensive Care Med 29: 763–769PubMedGoogle Scholar
  33. 33.
    Kumle B, Boldt J, Piper S, Schmidt C, Suttner S, Salopek S (1999) The influence of different intravascular volume replacement regimens on renal function in the elderly. Anesth Analg 89: 1124–1130CrossRefPubMedGoogle Scholar
  34. 34.
    Wiesen P, Canivet JL, Ledoux D, Roediger L, Damas P (2005) Effect of hydroxyethylstarch on renal function in cardiac surgery: a large scale retrospective study. Acta Anaesthesiol Belg 56: 257–263PubMedGoogle Scholar
  35. 35.
    Brunkhorst FM, Engel C, Bloos F, et al (2008) Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 358: 125–139CrossRefPubMedGoogle Scholar
  36. 36.
    Boldt J, Brosch C, Rohm K, Papsdorf M, Mengistu A (2008) Comparison of the effects of gelatin and a modern hydroxyethyl starch solution on renal function and inflammatory response in elderly cardiac surgery patients. Br J Anaesth 100: 457–464CrossRefPubMedGoogle Scholar
  37. 37.
    Boldt J, Brosch C, Ducke M, Papsdorf M, Lehmann A (2007) Influence of volume therapy with a modern hydroxyethylstarch preparation on kidney function in cardiac surgery patients with compromised renal function: a comparison with human albumin. Crit Care Med 35: 2740–2746CrossRefPubMedGoogle Scholar
  38. 38.
    Davidson IJ (2008) Hydroxyethyl starch 130/0.4: safe in cardiac surgery? Crit Care Med 36: 1695–1696CrossRefPubMedGoogle Scholar
  39. 39.
    Godet G, Lehot JJ, Janvier G, Steib A, De Castro V, Coriat P (2008) Safety of HES 130/0.4 (Voluven(R)) in patients with preoperative renal dysfunction undergoing abdominal aortic surgery: a prospective, randomized, controlled, parallel-group multicentre trial. Eur J Anaesthesiol 25: 986–994CrossRefPubMedGoogle Scholar
  40. 40.
    Schortgen F, Lacherade JC, Bruneel F, et al (2001) Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicentre randomised study. Lancet 357: 911–916CrossRefPubMedGoogle Scholar
  41. 41.
    Gosling P, Rittoo D, Manji M, Mahmood A, Vohra R (2001) Hydroxyethylstarch as a risk factor for acute renal failure in severe sepsis. Lancet 358:582CrossRefGoogle Scholar
  42. 42.
    Godet G (2001) Hydroxyethylstarch as a risk factor for acute renal failure in severe sepsis. Lancet 358: 582–583CrossRefGoogle Scholar
  43. 43.
    Boldt J (2001) Hydroxyethylstarch as a risk factor for acute renal failure in severe sepsis. Lancet 358: 581–583CrossRefPubMedGoogle Scholar
  44. 44.
    Honore PM, Joannes-Boyau O, Boer W (2008) Hyperoncotic colloids in shock and risk of renal injury: enough evidence for a banning order? Intensive Care Med 34: 2127–2129CrossRefPubMedGoogle Scholar
  45. 45.
    Sakr Y, Payen D, Reinhart K, et al (2007) Effects of hydroxyethyl starch administration on renal function in critically ill patients. Br J Anaesth 98: 216–224CrossRefPubMedGoogle Scholar
  46. 46.
    Schortgen F, Girou E, Deye N, Brochard L (2008) The risk associated with hyperoncotic colloids in patients with shock. Intensive Care Med 34: 2157–2168CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • G. Marx
    • 1
  • L. Hüter
    • 2
  • T. Schuerholz
    • 1
  1. 1.Department of Intensive Care University HospitalRWTH AachenAachenGermany
  2. 2.Department of Anesthesiology and Intensive CareFriedrich Schiller UniversityJenaGermany

Personalised recommendations