Advertisement

Determinants of Tissue PCO2 in Shock and Sepsis: Relationship to the Microcirculation

  • A. Dubin
  • V. S. K. Edul
  • C. Ince
Conference paper

Abstract

The development of gastrointestinal tonometry was an important step in the monitoring of tissue dysoxia. It rapidly became a useful tool in basic research. In addition, and for the first time, a regional parameter could be used to detect and to treat hypoperfusion. From an experimental point of view, tonometry adequately tracks intramucosal acidosis [1], i.e., the increase in intramucosal-arterial PCO2 difference (ΔPCO2). Likewise, the increase in ΔPCO2 is better than other systemic and intestinal variables to show tissue hypoperfusion in normal volunteers [2] and in experimental models [3]. Intramucosal acidosis is a sensitive predictor of gastric [4] and colonic mucosal ischemia [5]. Furthermore, gastric tonometry is an insightful predictor of outcome. This usefulness has been shown in postoperative [6], critically ill [7], septic [8] and shock [9] patients. Gastric tonometry might also be used to assess the effect of vasoactive drugs [10, 11]. Finally, intramucosal pH (pHi) has been evaluated as a guide for resuscitation. Gutierrez et al. [12] demonstrated in a randomized controlled trial that pHi-guided therapy could decrease mortality in critically ill patients.

Keywords

Ischemic Hypoxia Hypoxic Hypoxia Gastric Tonometry Superior Mesenteric Artery Blood Flow Intramucosal Acidosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antonsson JB, Boyle CC 3rd, Kruithoff KL, et al (1990) Validation of tonometric measurement of gut intramural pH during endotoxemia and mesenteric occlusion in pigs. Am J Physiol 259: G519–G523PubMedGoogle Scholar
  2. 2.
    Hamilton-Davies C, Mythen MG, Salmon JB, Jacobson D, Shukla A, Webb AR (1997) Comparison of commonly used clinical indicators of hypovolaemia with gastrointestinal tonometry. Intensive Care Med 23: 276–281CrossRefPubMedGoogle Scholar
  3. 3.
    Dubin A, Estenssoro E, Murias G, et al (2001) Effects of hemorrhage on gastrointestinal oxygenation. Intensive Care Med 27: 1931–1936CrossRefPubMedGoogle Scholar
  4. 4.
    Fiddian-Green R, McGough E, Pittenger G, Rothman E (1983) Predictive value of intramural pH and other risk factors for massive bleeding from stress ulceration. Gastroenterology 85: 613–620PubMedGoogle Scholar
  5. 5.
    Schiedler MG, Cutler BS, Fiddian-Green R (1987) Sigmoid intramural pH for prediction of ischemic colitis during aortic surgery. A comparison with risk factors and inferior mesenteric artery stump pressures. Arch Surg 122: 881–886PubMedGoogle Scholar
  6. 6.
    Mythen M, Webb A (1994) Intra-operative gut mucosal hypoperfusion is associated with increased post-operative complications and cost. Intensive Care Med 20: 99–104CrossRefPubMedGoogle Scholar
  7. 7.
    Doglio G, Pusajo J, Egurrola M, et al (1991) Gastric mucosal pH as a prognostic index of mortality in critically ill patients. Crit Care Med 19: 1037–1040CrossRefPubMedGoogle Scholar
  8. 8.
    Friedman G, Berlot G, Kahn R, Vincent JL (1995) Combined measurements of blood lactate concentrations and gastric intramucosal pH in patients with severe sepsis. Crit Care Med 23: 1184–1193CrossRefPubMedGoogle Scholar
  9. 9.
    Maynard N, Bihari D, Beale R, et al (1993) Assessment of splanchnic oxygenation by gastric tonometry in patients with acute circulatory failure. JAMA 270: 1203–1210CrossRefPubMedGoogle Scholar
  10. 10.
    Gutierrez G, Clark C, Brown SD, Price K, Ortiz L, Nelson C (1994) Effect of dobutamine on oxygen consumption and gastric mucosal pH in septic patients. Am J Respir Crit Care Med 150: 324–329PubMedGoogle Scholar
  11. 11.
    Nevière R, Mathieu D, Chagnon JL, Lebleu N, Wattel F (1996) The contrasting effects of dobutamine and dopamine on gastric mucosal perfusion in septic patients. Am J Respir Crit Care Med 154: 1684–1688PubMedGoogle Scholar
  12. 12.
    Gutierrez G, Palizas F, Doglio G, et al (1992) Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients. Lancet 339: 195–199CrossRefPubMedGoogle Scholar
  13. 13.
    Oud L, Kruse J (1996) Poor in vivo reproducibility of gastric intramucosal pH determined by saline-filled balloon tonometry. J Crit Care 11: 144–150CrossRefPubMedGoogle Scholar
  14. 14.
    Taylor D, Gutierrez G, Clark C, Hainley S (1997) Measurement of gastric mucosal carbon dioxide tension by saline and air tonometry. J Crit Care 12: 208–213CrossRefPubMedGoogle Scholar
  15. 15.
    Toledo Maciel A, Creteur J, Vincent JL (2004) Tissue capnometry: does the answer lie under the tongue? Intensive Care Med 30, 2157–2165CrossRefGoogle Scholar
  16. 16.
    Honig C, Connett R, Gayeski T, Brooks G (1990) Defining hypoxia: a systems view of VO2, glycolysis, energetics, and intracellular PO2. J Appl Physiol 68: 833–842PubMedGoogle Scholar
  17. 17.
    Grum C, Fiddian-Green R, Pittenger G, Grant B, Rothman E, Dantzker D (1984) Adequacy of tissue oxygenation in intact dog intestine. J Appl Physiol 56: 1065–1069PubMedGoogle Scholar
  18. 18.
    Schlichtig R, Bowles S (1994) Distinguishing between aerobic and anaerobic appearance of dissolved CO2 in intestine during low flow. J Appl Physiol 76: 2443–2451PubMedGoogle Scholar
  19. 19.
    Vallet B, Tavernier B, Lund N (2000) Assessment of tissue oxygenation in the critically ill. In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine. Springer-Verlag, Heidelberg, pp 715–725Google Scholar
  20. 20.
    Vallet B, Teboul JL, Cain S, Curtis S (2000) Venoarterial CO2 difference during regional ischemic or hypoxic hypoxia. J Appl Physiol 89: 1317–1321PubMedGoogle Scholar
  21. 21.
    Nevière R, Chagnon JL, Teboul JL, Vallet B, Wattel F (2002) Small intestine intramucosal PCO2 and microvascular blood flow during hypoxic and ischemic hypoxia. Crit Care Med 30, 379–384CrossRefPubMedGoogle Scholar
  22. 22.
    Wasserman K, Beaver WL, Whipp BJ (1990) Gas exchange theory and the lactic acidosis (anaerobic) threshold. Circulation 81 (1 Suppl):II14–30PubMedGoogle Scholar
  23. 23.
    Dubin A, Murias G, Estenssoro E, et al (2000) End-tidal CO2 pressure determinants during hemorrhagic shock. Intensive Care Med 26: 1619–1623CrossRefPubMedGoogle Scholar
  24. 24.
    Dubin A, Murias G, Estenssoro E, et al (2002) Intramucosal-arterial PCO2 gap fails to reflect intestinal dysoxia in hypoxic hypoxia. Crit Care 6: 514–520CrossRefPubMedGoogle Scholar
  25. 25.
    Dubin A, Estenssoro E, Murias G, et al (2004) Intramucosal-arterial PCO2 gradient does not reflect intestinal dysoxia in anemic hypoxia. J Trauma 57: 1211–1217CrossRefPubMedGoogle Scholar
  26. 26.
    Gutierrez G (2004) A mathematical model of tissue-blood carbon dioxide exchange during hypoxia. Am J Respir Crit Care Med 169: 525–533CrossRefPubMedGoogle Scholar
  27. 27.
    VanderMeer T, Wang H, Fink M (1995) Endotoxemia causes ileal mucosal acidosis in the absence of mucosal hypoxia in a normodynamic porcine model of septic shock. Crit Care Med 23: 1217–1226CrossRefPubMedGoogle Scholar
  28. 28.
    Fink M (2002) Bench-to-bedside review: Cytopathic hypoxia. Crit Care 6: 491–499CrossRefPubMedGoogle Scholar
  29. 29.
    Vallet B, Lund N, Curtis S, Kelly D, Cain S (1994) Gut and muscle tissue PO2 in endotoxemic dogs during shock and resuscitation. J Appl Physiol 76: 793–800PubMedGoogle Scholar
  30. 30.
    Revelly J-P, Ayuse T, Brienza N, Fessler H, Robotham J (1996) Endotoxic shock alters distribution of blood flow within the intestinal wall. Crit Care Med 24: 1345–1351CrossRefPubMedGoogle Scholar
  31. 31.
    Siegemund M, van Bommel J, Schwarte L, et al (2005) Inducible nitric oxide synthase inhibition improves intestinal microcirculatory oxygenation and CO2 balance during endotoxemia in pigs. Intensive Care Med 31: 985–992CrossRefPubMedGoogle Scholar
  32. 32.
    Tugtekin IF, Radermacher P, Theisen M, et al (2001) Increased ileal-mucosal-arterial PCO2 gap is associated with impaired villus microcirculation in endotoxic pigs. Intensive Care Med 27: 757–766CrossRefPubMedGoogle Scholar
  33. 33.
    Creteur J, De Backer D, Sakr Y, Koch M, Vincent JL (2006) Sublingual capnometry tracks microcirculatory changes in septic patients. Intensive Care Med 32: 516–523CrossRefPubMedGoogle Scholar
  34. 34.
    Dubin A, Kanoore Edul V, Murias G, et al (2008) Persistent villi hypoperfusion explains intramucosal acidosis in sheep endotoxemia. Crit Care Med 36: 535–542CrossRefPubMedGoogle Scholar
  35. 35.
    Dubin A, Murias G, Maskin B, et al (2005) Increased blood flow prevents intramucosal acidosis in sheep endotoxemia: a controlled study. Crit Care 9: R66–73CrossRefPubMedGoogle Scholar
  36. 36.
    Dubin A, Maskin B, Murias G, et al (2006) Effects of levosimendan in normodynamic endotoxaemia: a controlled experimental study. Resuscitation 69: 277–286CrossRefPubMedGoogle Scholar
  37. 37.
    Dubin A, Murias G, Sottile J; et al (2007) Effects of levosimendan and dobutamine in experimental acute endotoxemia: A preliminary controlled study. Intensive Care Med 33: 485–494CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • A. Dubin
    • 1
  • V. S. K. Edul
    • 1
  • C. Ince
    • 2
  1. 1.Unit of Applied Pharmacology Faculty of Medical ScienceLa Plata National UniversityLa Plata, Buenos AiresArgentina
  2. 2.Department of Translational Physiology Academic Medical CenterUniversity of AmsterdamAmsterdamNetherlands

Personalised recommendations