Non-septic Acute Lung Injury and Inflammation: Role of TLR4

  • E. Lorne
  • H. Dupont
  • E. Abraham


Although the role of Toll-like receptor 4 (TLR4) in bacterial infection and sepsis is well characterized, recent studies have also shown that TLR4 can play an important role in contributing to acute inflammatory processes and organ dysfunction in settings in which lipopolysaccharide (LPS) or other bacterial products are not present. In particular, there is increasing evidence that TLR4 is not just a receptor for LPS, but can also transduce other pro-inflammatory signals and, thereby, contribute to cellular activation leading to acute lung injury (ALI) and other organ system dysfunction.


Hyaluronic Acid Acute Lung Injury Xanthine Oxidase Lipid Raft TLR4 Activation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82: 47–95PubMedGoogle Scholar
  2. 2.
    Shenkar R, Abraham E (1999) Mechanisms of lung neutrophil activation after hemorrhage or endotoxemia: roles of reactive oxygen intermediates, NF-kappa B, and cyclic AMP response element binding protein. J Immunol 163: 954–962PubMedGoogle Scholar
  3. 3.
    Shiotani S, Shimada M, Taketomi A, et al (2007) Rho-kinase as a novel gene therapeutic target in treatment of cold ischemia/reperfusion-induced acute lethal liver injury: effect on hepatocellular NADPH oxidase system. Gene Ther 14: 1425–1433CrossRefPubMedGoogle Scholar
  4. 4.
    Tan LR, Waxman K, Clark L, et al (1993) Superoxide dismutase and allopurinol improve survival in an animal model of hemorrhagic shock. Am Surg 59: 797–800PubMedGoogle Scholar
  5. 5.
    Barsness KA, Arcaroli J, Harken AH, et al (2004) Hemorrhage-induced acute lung injury is TLR-4 dependent. Am J Physiol Regul Integr Comp Physiol 287: R592–599PubMedGoogle Scholar
  6. 6.
    Oyama J, Blais C Jr, Liu X, et al (2004) Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation 109: 784–789CrossRefPubMedGoogle Scholar
  7. 7.
    Wu H, Chen G, Wyburn KR, et al (2007) TLR4 activation mediates kidney ischemia/reperfusion injury. J Clin Invest 117: 2847–2859CrossRefPubMedGoogle Scholar
  8. 8.
    Bowler RP, Arcaroli J, Abraham E, Patel M, Chang LY, Crapo JD (2003) Evidence for extracellular superoxide dismutase as a mediator of hemorrhage-induced lung injury. Am J Physiol Lung Cell Mol Physiol 284: L680–687PubMedGoogle Scholar
  9. 9.
    Bowler RP, Arcaroli J, Crapo JD, Ross A, Slot JW, Abraham E (2001) Extracellular superoxide dismutase attenuates lung injury after hemorrhage. Am J Respir Crit Care Med 164: 290–294PubMedGoogle Scholar
  10. 10.
    Li Q, Bolli R, Qiu Y, et al (2001) Gene therapy with extracellular superoxide dismutase protects conscious rabbits against myocardial infarction. Circulation 103: 1893–1898PubMedGoogle Scholar
  11. 11.
    Shenkar R, Abraham E (1997) Hemorrhage induces rapid in vivo activation of CREB and NFkappaB in murine intraparenchymal lung mononuclear cells. Am J Respir Cell Mol Biol 16: 145–152PubMedGoogle Scholar
  12. 12.
    Lorne E, Zmijewski JW, Zhao X, et al (2008) Role of extracellular superoxide in neutrophil activation: interactions between xanthine oxidase and TLR4 induce proinflammatory cytokine production. Am J Physiol Cell Physiol 294: C985–993CrossRefPubMedGoogle Scholar
  13. 13.
    Park HS, Jung HY, Park EY, Kim J, Lee WJ, Bae YS (2004) Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. J Immunol 173: 3589–3593PubMedGoogle Scholar
  14. 14.
    Powers KA, Szaszi K, Khadaroo RG, et al (2006) Oxidative stress generated by hemorrhagic shock recruits Toll-like receptor 4 to the plasma membrane in macrophages. J Exp Med 203: 1951–1961CrossRefPubMedGoogle Scholar
  15. 15.
    Nakahira K, Kim HP, Geng XH, et al (2006) Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts. J Exp Med 203: 2377–2389CrossRefPubMedGoogle Scholar
  16. 16.
    Letarte PB, Lieberman K, Nagatani K, Haworth RA, Odell GB, Duff TA (1993) Hemin: levels in experimental subarachnoid hematoma and effects on dissociated vascular smooth-muscle cells. J Neurosurg 79: 252–255CrossRefPubMedGoogle Scholar
  17. 17.
    Nath KA, Vercellotti GM, Grande JP, et al (2001) Heme protein-induced chronic renal inflammation: suppressive effect of induced heme oxygenase-1. Kidney Int 59: 106–117CrossRefPubMedGoogle Scholar
  18. 18.
    Jeney V, Balla J, Yachie A, et al (2002) Pro-oxidant and cytotoxic effects of circulating heme. Blood 100: 879–887CrossRefPubMedGoogle Scholar
  19. 19.
    Figueiredo RT, Fernandez PL, Mourao-Sa DS, et al (2007) Characterization of heme as activator of Toll-like receptor 4. J Biol Chem 282: 20221–20229CrossRefPubMedGoogle Scholar
  20. 20.
    Imai Y, Kuba K, Neely GG, et al (2008) Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133: 235–249CrossRefPubMedGoogle Scholar
  21. 21.
    Agren UM, Tammi RH, Tammi MI (1997) Reactive oxygen species contribute to epidermal hyaluronan catabolism in human skin organ culture. Free Radic Biol Med 23: 996–1001CrossRefPubMedGoogle Scholar
  22. 22.
    Termeer C, Benedix F, Sleeman J, et al (2002) Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 195: 99–111CrossRefPubMedGoogle Scholar
  23. 23.
    Teder P, Vandivier RW, Jiang D, et al (2002) Resolution of lung inflammation by CD44. Science 296: 155–158CrossRefPubMedGoogle Scholar
  24. 24.
    Teriete P, Banerji S, Noble M, et al (2004) Structure of the regulatory hyaluronan binding domain in the inflammatory leukocyte homing receptor CD44. Mol Cell 13: 483–496CrossRefPubMedGoogle Scholar
  25. 25.
    Wang Q, Teder P, Judd NP, Noble PW, Doerschuk CM (2002) CD44 deficiency leads to enhanced neutrophil migration and lung injury in Escherichia coli pneumonia in mice. Am J Pathol 161: 2219–2228PubMedGoogle Scholar
  26. 26.
    Jiang D, Liang J, Fan J, et al (2005) Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 11: 1173–1179CrossRefPubMedGoogle Scholar
  27. 27.
    Vaneker M, Joosten LA, Heunks LM, et al (2008) Low-tidal-volume mechanical ventilation induces a toll-like receptor 4-dependent inflammatory response in healthy mice. Anesthesiology 109: 465–472CrossRefPubMedGoogle Scholar
  28. 28.
    Ha T, Li Y, Hua F, et al (2005) Reduced cardiac hypertrophy in toll-like receptor 4-deficient mice following pressure overload. Cardiovasc Res 68: 224–234CrossRefPubMedGoogle Scholar
  29. 29.
    Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418: 191–195CrossRefPubMedGoogle Scholar
  30. 30.
    Wang H, Bloom O, Zhang M, et al (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285: 248–251CrossRefPubMedGoogle Scholar
  31. 31.
    Ulloa L, Batliwalla FM, Andersson U, Gregersen PK, Tracey KJ (2003) High mobility group box chromosomal protein 1 as a nuclear protein, cytokine, and potential therapeutic target in arthritis. Arthritis Rheum 48: 876–881CrossRefPubMedGoogle Scholar
  32. 32.
    Abraham E, Arcaroli J, Carmody A, Wang H, Tracey KJ (2000) HMG-1 as a mediator of acute lung inflammation. J Immunol 165: 2950–2954PubMedGoogle Scholar
  33. 33.
    Yang H, Ochani M, Li J, et al (2004) Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci USA 101: 296–301CrossRefPubMedGoogle Scholar
  34. 34.
    Park JS, Gamboni-Robertson F, He Q, et al (2006) High mobility group box 1 protein interacts with multiple Toll-like receptors. Am J Physiol Cell Physiol 290: C917–924CrossRefPubMedGoogle Scholar
  35. 35.
    Sha Y, Zmijewski J, Xu Z, Abraham E (2008) HMGB1 develops enhanced proinflammatory activity by binding to cytokines. J Immunol 180: 2531–2537PubMedGoogle Scholar
  36. 36.
    Asea A, Rehli M, Kabingu E, et al (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277: 15028–15034CrossRefPubMedGoogle Scholar
  37. 37.
    Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12: 1539–1546CrossRefPubMedGoogle Scholar
  38. 38.
    Asea A (2007) Mechanisms of HSP72 release. J Biosci 32: 579–584CrossRefPubMedGoogle Scholar
  39. 39.
    Osterloh A, Veit A, Gessner A, Fleischer B, Breloer M (2008) Hsp60-mediated T cell stimulation is independent of TLR4 and IL-12. Int Immunol 20: 433–443CrossRefPubMedGoogle Scholar
  40. 40.
    Tsan MF, Gao B (2004) Cytokine function of heat shock proteins. Am J Physiol Cell Physiol 286: C739–744CrossRefPubMedGoogle Scholar
  41. 41.
    Galloway E, Shin T, Huber N, et al (2008) Activation of hepatocytes by extracellular heat shock protein 72. Am J Physiol Cell Physiol 295: C514–520CrossRefPubMedGoogle Scholar
  42. 42.
    Zou N, Ao L, Cleveland JC Jr, et al (2008) Critical role of extracellular heat shock cognate protein 70 in the myocardial inflammatory response and cardiac dysfunction after global ischemia-reperfusion. Am J Physiol Heart Circ Physiol 294: H2805–2813CrossRefPubMedGoogle Scholar
  43. 43.
    Fernandez-Lizarbe S, Pascual M, Gascon MS, Blanco A, Guerri C (2008) Lipid rafts regulate ethanol-induced activation of TLR4 signaling in murine macrophages. Mol Immunol 45: 2007–2016CrossRefPubMedGoogle Scholar
  44. 44.
    Blanco AM, Perez-Arago A, Fernandez-Lizarbe S, Guerri C (2008) Ethanol mimics ligandmediated activation and endocytosis of IL-1RI/TLR4 receptors via lipid rafts caveolae in astroglial cells. J Neurochem 106: 625–639CrossRefPubMedGoogle Scholar
  45. 45.
    Yohe HC, O’Hara KA, Hunt JA, et al (2006) Involvement of Toll-like receptor 4 in acetaminophen hepatotoxicity. Am J Physiol Gastrointest Liver Physiol 290: G1269–1279CrossRefPubMedGoogle Scholar
  46. 46.
    Williams AM, Langley PG, Osei-Hwediah J, Wendon JA, Hughes RD (2003) Hyaluronic acid and endothelial damage due to paracetamol-induced hepatotoxicity. Liver Int 23: 110–115CrossRefPubMedGoogle Scholar
  47. 47.
    Michael SL, Mayeux PR, Bucci TJ, et al (2001) Acetaminophen-induced hepatotoxicity in mice lacking inducible nitric oxide synthase activity. Nitric Oxide 5: 432–441CrossRefPubMedGoogle Scholar
  48. 48.
    Hinson JA, Bucci TJ, Irwin LK, Michael SL, Mayeux PR (2002) Effect of inhibitors of nitric oxide synthase on acetaminophen-induced hepatotoxicity in mice. Nitric Oxide 6: 160–167CrossRefPubMedGoogle Scholar
  49. 49.
    Knight TR, Ho YS, Farhood A, Jaeschke H (2002) Peroxynitrite is a critical mediator of acetaminophen hepatotoxicity in murine livers: protection by glutathione. J Pharmacol Exp Ther 303: 468–475CrossRefPubMedGoogle Scholar
  50. 50.
    Laukkanen MO, Leppanen P, Turunen P, et al (2001) EC-SOD gene therapy reduces paracetamol-induced liver damage in mice. J Gene Med 3: 321–325CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • E. Lorne
    • 1
  • H. Dupont
    • 2
  • E. Abraham
    • 3
  1. 1.INSERM ERI-12Université Jules Verne de Picardie Centre Hospitalier Universitaire d4amiensAmiens CedexFrance
  2. 2.Department of Anesthesiology and Intensive CareCentre Hospitalier Universitaire d’AmiensAmiens CedexFrance
  3. 3.Department of MedicineUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations