The Pivotal Role of Beta-adrenoreceptors in Critical Illness Pathophysiology

  • G. L. Ackland
  • A. J. Patterson


The coordinated, emergent regulation of nervous, endocrine, hemodynamic and metabolic processes in response to critical illness is characterized by marked release of catecholamines. Despite several-fold increases in circulating catecholamines, which correlate with clinical outcome, there is a limited understanding of the receptor and cellular consequences of this fundamental critical illness response. Beta-adrenoreceptors are pivotal in the response to this catecholamine surge, playing disparate roles in shaping physiological responses during different stages of critical illness. Here we review mechanisms and common disease processes through which acute and chronic alterations in β-adrenoreceptor physiology may affect important components of critical illness and discuss emerging therapeutic roles for beta-adrenoreceptor manipulation.


Critical Illness Metoprolol Succinate Catecholamine Surge Intestinal Lymphocyte Peripheral Lipolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Guimarães S, Moura D (2001) Vascular adrenoreceptors: an update. Pharmacol Rev. 53: 319–356PubMedGoogle Scholar
  2. 2.
    Xiao RP, Avdonin P, Zhou YY, et al (1999) Coupling of beta2-AR to Gi proteins and its physiological relevance in murine cardiac myocytes. Circ Res 84: 43–52PubMedGoogle Scholar
  3. 3.
    Xiao RP, Cheng H, Zhou YY, Kuschel M, Lakatta EG (1999) Recent advances in cardiac beta2-adrenergic signal transduction. Circ Res 85: 1092–1100PubMedGoogle Scholar
  4. 4.
    Engelhardt S, Hein L, Wiesmann F, Lohse MJ (1999) Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. Proc Natl Acad Sci USA 96: 7059–7064CrossRefPubMedGoogle Scholar
  5. 5.
    Milano CA, Allen LF, Rockman HA, et al (1994) Enhanced myocardial function in transgenic mice overexpressing the beta2-adrenergic receptor. Science 264: 582–586CrossRefPubMedGoogle Scholar
  6. 6.
    Communal C, Singh K, Sawyer DB, Colucci WS (1999) Opposing effects of beta1-and beta2-adrenergic receptors on cardiac myocyte apoptosis: role of a pertussis toxin-sensitive G protein. Circulation 100: 2210–2212PubMedGoogle Scholar
  7. 7.
    Xiao RP, Zhu W, Zheng M, et al (2006) Subtype-specific beta1 and beta2 adrenoreceptor Signaling in the Heart. Trends Pharmacol Sci 27: 330–337CrossRefPubMedGoogle Scholar
  8. 8.
    Richter W, Day P, Agrawal R, et al (2008) Signaling from beta1 and beta2 adrenergic receptors is defined by differential interactions with PDE4. EMBO J 27: 384–393CrossRefPubMedGoogle Scholar
  9. 9.
    Bünemann M, Lee KB, Pals-Rylaarsdam R, Roseberry AG, Hosey MM (1999) Desensitization of G-protein-coupled receptors in the cardiovascular system. Annu Rev Physiol 61: 169–192CrossRefPubMedGoogle Scholar
  10. 10.
    Reiter E, Lefkowitz RJ (2006) GRKs and beta-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol Metab 17: 159–165CrossRefPubMedGoogle Scholar
  11. 11.
    Patterson AJ, Zhu W, Chow A, et al (2004) Protecting the myocardium: A role for the beta2 adrenergic receptor in the heart. Crit Care Med 32: 1041–1048CrossRefPubMedGoogle Scholar
  12. 12.
    Collin S, Sennoun N, Levy B (2008) Cardiovascular and metabolic responses to catecholamine and sepsis prognosis: a ubiquitous phenomenon? Crit Care 12: 118CrossRefPubMedGoogle Scholar
  13. 13.
    Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE (2005) Relation between muscle Na+K+-ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet 365: 871–875CrossRefPubMedGoogle Scholar
  14. 14.
    Levraut J, Ichai C, Petit I, Ciebiera JP, Perus O, Grimaud D (2003) Low exogenous lactate clearance as an early predictor of mortality in normolactatemic critically ill septic patients. Crit Care Med 31: 705–710CrossRefPubMedGoogle Scholar
  15. 15.
    Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES (2000) The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev. 52: 595–638PubMedGoogle Scholar
  16. 16.
    Flierl MA, Rittirsch D, Huber-Lang M, Sarma JV, Ward PA (2008) Catecholamines-crafty weapons in the inflammatory arsenal of immune/inflammatory cells or opening pandora’s box? Mol Med 14: 195–204PubMedGoogle Scholar
  17. 17.
    Sanders VM, Straub RH (2002) Norepinephrine, the beta-adrenergic receptor, and immunity. Brain Behav Immun 16: 290–332CrossRefPubMedGoogle Scholar
  18. 18.
    Elenkov IJ, Chrousos GP (1999) Stress hormones, Th1/Th2 patterns, pro/anti-inflammatory cytokines and susceptibility to disease. Trends Endocrinol Metab 10: 359–368CrossRefPubMedGoogle Scholar
  19. 19.
    Elenkov IJ, Kvetnansky R, Hashiramoto A, et al (2008) Low-versus high-baseline epinephrine output shapes opposite innate cytokine profiles: presence of Lewis-and Fischer-like neurohormonal immune phenotypes in humans? J Immunol 181: 1737–1745PubMedGoogle Scholar
  20. 20.
    Straub RH, Linde HJ, Männel DN, Schölmerich J, Falk W (2000) A bacteria induced switch of sympathetic effector mechanisms augments local inhibition of TNF-alpha and IL-6 secretion in the spleen. FASEB J 14: 1380–1388CrossRefPubMedGoogle Scholar
  21. 21.
    Lyte M, Freestone PP, Neal CP, et al (2003) Stimulation of Staph epidermidis growth and biofi lm formation by catecholamine inotropes. Lancet 361: 130–135CrossRefPubMedGoogle Scholar
  22. 22.
    Coopersmith CM, Stromberg PE, Dunne WM, et al (2002) Inhibition of intestinal epithelial apoptosis and survival in a murine model of pneumonia-induced sepsis. JAMA 287: 1716–1721CrossRefPubMedGoogle Scholar
  23. 23.
    Stevenson JR, Westermann J, Liebmann PM, et al (2001) Prolonged alpha-adrenergic stimulation causes changes in leukocyte distribution and lymphocyte apoptosis in the rat. J Neuroimmunol 120: 50–57CrossRefPubMedGoogle Scholar
  24. 24.
    Oberbeck R, van Griensven M, Nickel E, Tschernig T, Wittwer T, Pape HC (2002) Influence of beta-AR antagonists on hemorrhage-induced cellular immune suppression. Shock 18: 331–335CrossRefPubMedGoogle Scholar
  25. 25.
    Norbury WB, Jeschke MG, Herndon DN (2007) Metabolism modulators in sepsis: propranolol. Crit Care Med 35: S616–620CrossRefPubMedGoogle Scholar
  26. 26.
    Herndon DN, Hart DW, Wolf SE, Chinkes DL, Wolfe RR (2001) Reversal of catabolism by beta-blockade after severe burns. N Engl J Med 345: 1223–1229CrossRefPubMedGoogle Scholar
  27. 27.
    Shaw JH, Holdaway CM, Humberstone DA (1988) Metabolic intervention in surgical patients: The effect of alpha-or beta-blockade on glucose and protein metabolism in surgical patients receiving total parenteral nutrition. Surgery 103: 520–525PubMedGoogle Scholar
  28. 28.
    Langouche L, Vanhorebeek I, Van den Berghe G (2007) Therapy insight: the effect of tight glycemic control in acute illness. Nat Clin Pract Endocrinol Metab 3: 270–278CrossRefPubMedGoogle Scholar
  29. 29.
    Ackland G, Grocott MP, Mythen MG (2000) Understanding gastrointestinal perfusion in critical care: so near, and yet so far. Crit Care 4: 269–281CrossRefPubMedGoogle Scholar
  30. 30.
    Husain KD, Coopersmith CM (2003) Role of intestinal epithelial apoptosis in survival. Curr Opin Crit Care 9: 159–163CrossRefPubMedGoogle Scholar
  31. 31.
    Lyte M, Bailey MT (1997) Neuroendocrine-bacterial interactions in a neurotoxin-induced model of trauma. J Surg Res 70: 95–201CrossRefGoogle Scholar
  32. 32.
    Marra S, Burnett M, Hoffman-Goetz L (2005) Intravenous catecholamine administration affects mouse intestinal lymphocyte number and apoptosis. J Neuroimmunol 158: 76–85CrossRefPubMedGoogle Scholar
  33. 33.
    Marra S, Hoffman-Goetz L (2004) Beta-adrenergic receptor blockade during exercise decreases intestinal lymphocyte apoptosis but not cell loss in mice. Can J Physiol Pharmacol 82: 465–473CrossRefPubMedGoogle Scholar
  34. 34.
    Prass K, Meisel C, Höflich C, et al (2003) Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med 198: 725–736CrossRefPubMedGoogle Scholar
  35. 35.
    Inaba K, Teixeira PG, David JS, et al (2008) Beta-blockers in isolated blunt head injury. J Am Coll Surg 206: 432–438CrossRefPubMedGoogle Scholar
  36. 36.
    Patterson AJ, Zhu W, Chow A, et al (2004) Protecting the myocardium: a role for the beta2 adrenergic receptor in the heart. Crit Care Med 32: 1041–1048CrossRefPubMedGoogle Scholar
  37. 37.
    Lohse MJ, Engelhardt S, Eschenhagen T (2003) What is the role of beta-adrenergic signaling in heart failure? Circ Res 93: 896–906CrossRefPubMedGoogle Scholar
  38. 38.
    Small KM, Wagoner LE, Levin AM, Kardia SL, Liggett SB (2002) Synergistic polymorphisms of beta1-and alpha2C-adrenergic receptors and the risk of congestive heart failure. N Engl J Med 347: 1135–1142CrossRefPubMedGoogle Scholar
  39. 39.
    Heckbert SR, Hindorff LA, Edwards KL, et al (2003) Beta2-adrenergic receptor polymorphisms and risk of incident cardiovascular events in the elderly. Circulation 107: 2021–2024CrossRefPubMedGoogle Scholar
  40. 40.
    Rudiger A, Singer M (2007) Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med 35: 1599–608CrossRefPubMedGoogle Scholar
  41. 41.
    Matsuda N, Hattori Y, Akaishi Y, et al (2000) Impairment of cardiac [beta]-AR cellular signaling by decreased expression of Gs[alpha] in septic rabbits. Anesthesiology 93: 1465–1473CrossRefPubMedGoogle Scholar
  42. 42.
    Chung MK, Gulick TS, Rotondo RE, et al (1990) Mechanism of cytokine inhibition of betaadrenergic agonist stimulation of cyclic AMP in rat cardiac myocytes. Impairment of signal transduction. Circ Res 67: 753–763Google Scholar
  43. 43.
    Böhm M, Kirchmayr R, Gierschik P, et al (1995) Increase of myocardial inhibitory G-proteins in catecholamine-refractory septic shock or in septic multiorgan failure. Am J Med 98: 183–186CrossRefPubMedGoogle Scholar
  44. 44.
    Moniotte S, Belge C, Sekkali B, et al (2007) Sepsis is associated with an upregulation of functional beta3 ARs in the myocardium. Eur J Heart Fail 9: 1163–1171CrossRefPubMedGoogle Scholar
  45. 45.
    Rhodes A, Lamb FJ, Malagon I, Newman PJ, Grounds RM, Bennett ED (1999) A prospective study of the use of a dobutamine stress test to identify outcome in patients with sepsis, severe sepsis, or septic shock. Crit Care Med 27: 2361–2366CrossRefPubMedGoogle Scholar
  46. 46.
    Giebelen IA, Leendertse M, Dessing MC, et al (2008) Endogenous beta-adrenergic receptors inhibit lipopolysaccharide-induced pulmonary cytokine release and coagulation. Am J Respir Cell Mol Biol 39: 373–379CrossRefPubMedGoogle Scholar
  47. 47.
    Wiener-Kronish JP, Matthay MA (2006) Beta-2-agonist treatment as a potential therapy for acute inhalational lung injury. Crit Care Med 34: 1841–1842CrossRefPubMedGoogle Scholar
  48. 48.
    Lovén J, Svitacheva N, Jerre A, Miller-Larsson A, Korn SH (2007) Anti-inflammatory activity of beta2-agonists in primary lung epithelial cells is independent of glucocorticoid receptor. Eur Respir J 30: 848–856CrossRefPubMedGoogle Scholar
  49. 49.
    Green AR, Grahame-Smith DG (1976) (−)-Propranolol inhibits the behavioral responses of rats to increased 5-hydroxytryptamine in the central nervous system. Nature 262: 594–596CrossRefPubMedGoogle Scholar
  50. 50.
    POISE Study Group (2008) Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomized controlled trial. Lancet: 371: 1839–1847CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • G. L. Ackland
    • 1
  • A. J. Patterson
    • 1
  1. 1.Department of AnesthesiaStanford University Medical CenterStanfordUSA

Personalised recommendations