Clarithromycin: A Promising Immunomodulator in Sepsis

  • E. J. Giamarellos-Bourboulis
Conference paper


Severe sepsis and septic shock are among the leading causes of death, representing the 10th most common cause of death in the United States of America [1]. The high mortality rates, ranging between 35 and 50 % despite adequate antimicrobial treatment [2], have encouraged intense research efforts to better understand the mechanisms underlying the pathogenesis of sepsis. As a consequence, sepsis syndrome is now recognized as a complex entity created by an intense inflammatory reaction that is generated in the host after stimulation of the innate and adaptive immune systems by bacterial components [3].


Cystic Fibrosis Septic Shock Severe Sepsis Antimicrob Agent Pneumococcal Pneumonia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Heron M (2007) Deaths: leading causes for 2004. Natl Vital Stat Rep 56: 1–95PubMedGoogle Scholar
  2. 2.
    Engel C, Brunkhorst FM, Bone HG, et al (2007) Epidemiology of sepsis in Germany: results from a national prospective multicenter study. Intensive Care Med 33: 606–618CrossRefPubMedGoogle Scholar
  3. 3.
    Hotchkiss RS, Karl IE (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348: 138–150CrossRefPubMedGoogle Scholar
  4. 4.
    Dellinger RP, Levy MM, Carlet JM, et al (2008) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 36: 296–327CrossRefPubMedGoogle Scholar
  5. 5.
    Giamarellos-Bourboulis EJ (2008) Macrolides beyond the conventional antimicrobials: a class of potent immunomodulators. Int J Antimicrob Agents 31: 12–20CrossRefPubMedGoogle Scholar
  6. 6.
    Wolter J, Seeney S, Bell S, Bowler S, Masel P, McCormack J (2002) Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomized trial. Thorax 57: 212–216CrossRefPubMedGoogle Scholar
  7. 7.
    Equi A, Balfour-Lynn IM, Bush A, Rosenthal M (2002) Long term azithromycin in children with cystic fibrosis: a randomized, placebo-controlled crossover trial. Lancet 360: 978–984CrossRefPubMedGoogle Scholar
  8. 8.
    Saiman L, Marshall BC, Mayer-Hamblett N, et al (2003) Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa._A randomized controlled trial. JAMA 290: 1749–1756CrossRefPubMedGoogle Scholar
  9. 9.
    Clement A, Tamalet A, Leroux E, Ravilly S, Fauroux B, Jais JP (2006) Long term effects of azithromycin in patients with cystic fibrosis: a double blind, placebo controlled trial. Thorax 61: 895–902CrossRefPubMedGoogle Scholar
  10. 10.
    Martínez JA, Horcajada JP, Almela M, et al (2003) Addition of a macrolide to a beta-lactambased empirical antibiotic regimen is associated with lower in-hospital mortality for patients with bacteremic pneumococcal pneumonia. Clin Infect Dis 36: 389–395CrossRefPubMedGoogle Scholar
  11. 11.
    García Vázquez E, Mensa J, Martínez JA, et al (2005) Lower mortality among patients with community-acquired pneumonia treated with a macrolide plus a beta-lactam agent versus a beta-lactam agent alone. Eur J Clin Microbiol Infect Dis 24: 190–195CrossRefPubMedGoogle Scholar
  12. 12.
    Lodise TP, Kwa A, Cosler L, Gupta R, Smith RP (2007) Comparison of β-lactam and macrolide combination therapy versus fluoroquinolone monotherapy in hospitalized veterans affairs patients with community-acquired pneumonia. Antimicrob Agents Chemother 51: 3977–3982CrossRefPubMedGoogle Scholar
  13. 13.
    Metersky ML, Ma A, Houck PM, Bratzler DW (2007) Antibiotics for bacteremic pneumonia: improved outcomes with macrolides but not fluoroquinolones. Chest 131: 466–473CrossRefPubMedGoogle Scholar
  14. 14.
    Restrepo MI, Mortensen EM, Waterer GW, Wunderink RG, Coalson JJ, Anzueto A (2009) Impact of macrolide therapy on mortality for patients with severe sepsis due to pneumonia. Eur Respir J (in press)Google Scholar
  15. 15.
    Aspa J, Rajas O, Rodriguez de Castro F, et al (2006) Impact of initial antibiotic choice on mortality from pneumococcal pneumonia. Eur Respir J 27: 1010–1019PubMedGoogle Scholar
  16. 16.
    Kikuchi T, Hagiwara K, Honda Y, et al (2002) Clarithromycin suppresses lipopolysaccharideinduced interleukin-8 production by human monocytes through AP-1 and NF-κB transcription factors. J Antimicrob Chemother 49: 745–755CrossRefPubMedGoogle Scholar
  17. 17.
    Darkes MJ, Perry CM (2003) Clarithromycin extended-release tablet: a review of its use in the management of respiratory tract infections. Am J Respir Med 2: 175–201.PubMedGoogle Scholar
  18. 18.
    Danesi R, Lupetti A, Barbara C (2003) Comparative distribution of azithromycin in lung tissue of patients given oral daily doses of 500 and 1000 mg. J Antimicrob Chemother 51: 939–945CrossRefPubMedGoogle Scholar
  19. 19.
    Giamarellos-Bourboulis EJ, Adamis T, Laoutaris G, et al (2004) Immunomodulatory clarithromycin treatment of experimental sepsis and acute pyelonephritis caused by multidrugresistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 48: 93–99CrossRefPubMedGoogle Scholar
  20. 20.
    Giamarellos-Bourboulis EJ, Antonopoulou A, Raftogiannis M, et al (2006) Clarithromycin is an effective immunomodulator when administered late in experimental pyelonephritis by multidrug-resistant Pseudomonas aeruginosa. BMC Infect Dis 6: 31CrossRefPubMedGoogle Scholar
  21. 21.
    Giamarellos-Bourboulis EJ, Baziaka F, Antonopoulou A, et al (2005) Clarithromycin coadministered with amikacin attenuates systemic inflammation in experimental sepsis by Escherichia coli. Int J Antimicrob Agents 25: 168–172CrossRefPubMedGoogle Scholar
  22. 22.
    Giamarellos-Bourboulis EJ, Adamis T, Sabracos L, et al (2005) Clarithromycin: immunomodulatory therapy of experimental sepsis and acute pyelonephritis by Escherichia coli. Scand J Infect Dis 37: 48–54CrossRefPubMedGoogle Scholar
  23. 23.
    Giamarellos-Bourboulis EJ, Tziortzioti V, Koutoukas P, et al (2006) Clarithromycin is an effective immunomodulator in experimental pyelonephritis caused by pan-resistant Klebsiella pneumonia. J Antimicrob Chemother 57: 937–944.CrossRefPubMedGoogle Scholar
  24. 24.
    Baziaka F, Giamarellos-Bourboulis EJ, Raftogiannis M, et al (2008) Immunomodulatory effect of three-day continuous administration of clarithromycin for experimental sepsis due to multidrug-resistant Pseudomonas aeruginosa. J Chemother 20: 63–68PubMedGoogle Scholar
  25. 25.
    Vincent JL, Sun Q, Dubois MJ (2003) Clinical trials of immunomodulatory therapies in severe sepsis and septic shock. Clin Infect Dis 34: 1084–1093CrossRefGoogle Scholar
  26. 26.
    Giamarellos-Bourboulis EJ (2008) Immunomodulatory therapies for sepsis: unexpected effects with macrolides. Int J Antimicrob Agents (in press)Google Scholar
  27. 27.
    Giamarellos-Bourboulis EJ, Pechère JC, Routsi C, et al (2008) Effect of clarithromycin in patients with sepsis and ventilator-associated pneumonia. Clin Infect Dis 46: 1157–1164CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • E. J. Giamarellos-Bourboulis
    • 1
  1. 1.4th Department of Internal MedicineAttikon University HospitalAthensGreece

Personalised recommendations