Lexical-gustatory Synesthesia and Food- and Diet-related Behavior

  • Julia Simner


Lexical-gustatory synesthesia is a subvariant of the inherited neurological condition known as synesthesia, which is characterized by a merging of sensory and/or cognitive functions. Synesthetes experience two (or more) sensations when only one modality is stimulated. For example, synesthetes might hear sounds but also see colors when listening to music. Alternatively, synesthetes might see colors when touching surface textures, or when experiencing the taste of food in the mouth. Synesthesia has a known genetic basis and is linked to increased structural connectivity in the brain. This hyperconnectivity arises from neuro-developmental differences in the brain maturation of synesthetes, but can be influenced by environmental factors such as learning and experience. In lexical-gustatory synesthesia, reading, saying, or hearing words triggers accompanying food sensations, and these are experienced as either veridical perceptions of flavor (e.g., the word jail tastes of bacon in the mouth) or as an overwhelming and automatic cognitive association between the triggering word and the food type (e.g., the word jail evokes the notion of bacon). These sensations are related to diet and eating behaviors, and have a profound impact on the life of the synesthete. This chapter describes the characteristics of this unusual condition.


Food Experience Flavor Perception Synesthetic Color Sausage Meat Synesthetic Experience 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





Functional magnetic resonance imaging


Diffusion tensor imaging


  1. Asher JE, Lamb JA, Brocklebank D, Cazier JB, Maestrini E, Addis L, Sen M, Baron-Cohen S, Monaco AP. Am J Hum Genet. 2009;84:279–85.PubMedCrossRefGoogle Scholar
  2. Banissy MJ, Ward J. Nat Neurosci. 2007;10:815–6.PubMedCrossRefGoogle Scholar
  3. Baron-Cohen S, Burt L, Smith-Laittan F, Harrison J, Bolton P. Perception. 1996;25:1073–9.PubMedCrossRefGoogle Scholar
  4. Beeli G, Esslen M, Jäncke L. Nature 2005;434:38.PubMedCrossRefGoogle Scholar
  5. Callejas A, Acosta A, Lupianez J. Brain Res. 2007;1127:99–107.PubMedCrossRefGoogle Scholar
  6. Cytowic RE, Wood FB. Brain Cognition. 1982;1:36–49.CrossRefGoogle Scholar
  7. Cytowic RE. Synaesthesia: A union of the senses. Springer, New York; 1989.Google Scholar
  8. Cytowic RE. The man who tasted shapes. London: Abacus Books; 1993.Google Scholar
  9. Day S. In: Robertson LC, Sagiv N editors. Synesthesia: perspectives from cognitive neuroscience. New York: Oxford University Press; 2005. p. 11–33.Google Scholar
  10. Dixon MJ, Smilek D, Merikle PM. Cogn Affect Behav Ne. 2004;4:355–43.Google Scholar
  11. Ferrari GC. Riv Psicologia. 1907;3:297–317.Google Scholar
  12. Ferrari GC. Riv Psicologia. 1910;6:101–4.Google Scholar
  13. Grossenbacher PG. In: Baron-Cohen S, Harrison JE editors. Synaesthesia: classic and contemporary readings. Oxford: Blackwell; 1997.Google Scholar
  14. Hubbard EM, Ramachandran VS. Neuron. 2005;48:509–20.PubMedCrossRefGoogle Scholar
  15. Hubbard EM, Annan AC, Ramachandran VS, Boynton GN. Neuron. 2005;45:975–85.PubMedCrossRefGoogle Scholar
  16. Murphy C, Cain WS, Bartoshuk LM. Sens Process. 1977;1:204–11.Google Scholar
  17. Nunn JA, Gregory LJ, Brammer M, Williams SCR, Parslow DM, Morgan MJ, Morris RG, Bullmore ET, Baron-Cohen S, Gray JA. Nat Neurosci. 2002;5:371–5.PubMedCrossRefGoogle Scholar
  18. Pierce AH. Am J Psychol. 1907;18:341–52.CrossRefGoogle Scholar
  19. Rich AN, Bradshaw JL, Mattingley JB. Cognition. 2005;98:53–84.PubMedCrossRefGoogle Scholar
  20. Rouw R, Scholte HS. Nat Neurosci. 2007;10:792–7.PubMedCrossRefGoogle Scholar
  21. Simner J. Trends in cognitive Sciences. 2007;11:23–29.PubMedCrossRefGoogle Scholar
  22. Simner J, Haywood SL. Cognition. 2009;110:171–81.PubMedCrossRefGoogle Scholar
  23. Simner J, Hubbard EM. Neuroscience. 2006;143:805–14.PubMedCrossRefGoogle Scholar
  24. Simner J, Ward J. Nature. 2006;444:438.PubMedCrossRefGoogle Scholar
  25. Simner J, Logie RH. Neurocase. 2007;13:358–65.PubMedCrossRefGoogle Scholar
  26. Simner J, Glover L, Mowat A. Cortex. 2006a;42:281–9.PubMedCrossRefGoogle Scholar
  27. Simner J, Mulvenna C, Sagiv N, Tsakanikos E, Witherby SA, Fraser C, Scott K, Ward J. Perception. 2006b;35:1024–33.PubMedCrossRefGoogle Scholar
  28. Simner J. In: Windhorst U, Binder M, Hirokawa N editors. Encyclopedia of neuroscience. GmbH, Heidelberg: Springer Verlag.Google Scholar
  29. Smilek D, Dixon MJ, Cudahy C, Merikle PM. Psychol Sci. 2002;13:548–52.PubMedCrossRefGoogle Scholar
  30. Ward J, Simner J. Cognition. 2003;89:237–61.PubMedCrossRefGoogle Scholar
  31. Ward J, Simner J. Perception. 2005;34:611–23.PubMedCrossRefGoogle Scholar
  32. Ward J, Simner J, Auyeung V. Cogn Neuropsychol. 2005;22:28–41.PubMedCrossRefGoogle Scholar
  33. Ward J, Huckstep B, Tsakanikos E. Cortex. 2006;42:264–80.PubMedCrossRefGoogle Scholar
  34. Ward J, Sagiv N, Butterworth B. Cortex. 2009;45:1261–5.PubMedCrossRefGoogle Scholar
  35. Yaro C, Ward J. Q J Exp Psychol. 2007;60:682–96.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Philosophy, Psychology and Language SciencesUniversity of EdinburghEdinburghUK

Personalised recommendations