Infantile Olfactory Learning

  • Katsumi Mizuno


The human fetus is exposed to the unique odor of his/her mother’s amniotic fluid while in the uterus. The odor of amniotic fluid plays two important roles related to enhanced neonatal survival. The first role is to soothe neonates, enabling them to better adapt to the world. The odor of amniotic fluid may also prevent neonates from suffering hypoglycemia and non-physiological weight loss. Hence, the olfactory memory acquired in utero helps “immature” neonate to survive. The second role of the odor of amniotic fluid is that it ensures a preparatory response for oral feeding. Sucking movements increase when infants are exposed to these odors. Infant exposure to amniotic fluid aids in the transition to colostrum/breastmilk. Neonates show preference for breasts covered with amniotic fluid and the odor induces them to suck on their own. In addition, nipple, areola, and milk odors appear equivalent to the entire breast odor in stimulating oral activity. The volatile compounds that originate from areolar secretions or breastmilk stimulate eye opening and mouth movement in newborns. This olfactory preference changes over time from amniotic fluid/colostrum to mature breastmilk. Newborn infants display behavioral attraction to the odor of amniotic fluid but this disappears by 2–5 days postpartum. Four-day-old babies whose mothers are producing transient milk rather than colostrum respond positively to the odor of their mother’s milk. Neonates learn the odors of many kinds of food through the odor of breastmilk. Mothers who abruptly change their diet after delivery – thereby lessening the degree of prenatal–postnatal olfactory continuity – experience increased difficulty establishing breastfeeding. Through these mother–infant interactions, infants ready themselves for the solids that are common in his/her community. Skin-to-skin contact immediately after birth is important not only for increasing breastfeeding duration, but also in terms of enhancing early maternal discrimination through olfactory stimuli. Mothers are also able to identify the odor of their own amniotic fluid; in this way, mother–infant bonding is strengthened through olfactory stimuli.


Amniotic Fluid Olfactory Stimulus Breastfed Infant Olfactory Learning Maternal Attachment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Balogh RD, Porter RH. Infant Behav Dev. 1986;9:395–401.CrossRefGoogle Scholar
  2. Bartocci M, Winberg J, Ruggiero C, Bergqvist LL, Serra G, Lagercrantz H. Pediatr Res. 2000;48:18–23.PubMedCrossRefGoogle Scholar
  3. Bartocci M, Winberg J, Papendieck G, Mustica T, Serra G, Largercrantz H. Pediatr Res. 2001;50:324–30.PubMedCrossRefGoogle Scholar
  4. Beauchamp GK, Mennella JA. J Pediatr Gastroenterol Nutr. 2009;48:S25–30.PubMedCrossRefGoogle Scholar
  5. Beauchamp GK, Yamazaki K, Currant M, et al. Immunogenetics. 1994;39:109–13.PubMedCrossRefGoogle Scholar
  6. Bilkó A, Altbācker V, Hudson R. Physiol Behav. 1994;56:907–12.PubMedCrossRefGoogle Scholar
  7. Brennan P, Kaba H, Keverne EB. Science. 1990;250:1223–6.PubMedCrossRefGoogle Scholar
  8. Campbell RG. Anim Prod. 1976;23:417–9.CrossRefGoogle Scholar
  9. Capretta PJ, Petersik JT, Stewart DJ. Nature. 1975;254:689–91.PubMedCrossRefGoogle Scholar
  10. Curry MA. Nursing Res. 1982;31:73–8.CrossRefGoogle Scholar
  11. Davis LB, Porter RH. Chem Senses. 1991;16:169–74.CrossRefGoogle Scholar
  12. de Vries JIP, Visser GHA, Prechtl HFR. Early Hum Dev. 1985;12:99–120.PubMedCrossRefGoogle Scholar
  13. DeCasper AJ, Fifer WP. Science. 1980;208:1174–6.PubMedCrossRefGoogle Scholar
  14. de Château P, Winberg B. Scand J Soc Med. 1984;12:91–103.PubMedGoogle Scholar
  15. Engen T, Lipsitt LP. J Comp Physiol Psychol. 1963;56:73–7.CrossRefGoogle Scholar
  16. Galef Jr BG, Henderson PW. J Comp Physiol Psychiatrics. 1972;78:213–9.CrossRefGoogle Scholar
  17. Galef Jr BG, Sherry DF. J Comp Physiol Psychiatrics. 1973;83:374–8.CrossRefGoogle Scholar
  18. Hauser GJ, Chitayat D, Berns L, Braver D, Muhlbauer B. Eur J Pediatrics. 1984;144:403.CrossRefGoogle Scholar
  19. Hepper PG. Acta Paediatr. 1996;416(suppl):16–20.CrossRefGoogle Scholar
  20. Kennell JH, Klaus MH. Pediatr Rev. 1998;19:4–12.PubMedGoogle Scholar
  21. Lagercrantz H. News Physiol Sci. 1996;11:214–8.Google Scholar
  22. Macfarlane A. Olfaction in the development of social preferences in the human neonate. In: Porter R, editor. Parent-infant interaction. Amsterdam: Elsevier; 1975. p. 103–13.Google Scholar
  23. Mainardi M, Poli M, Valsecchi P. Biol Behav. 1989;14:185–94.Google Scholar
  24. Marlier L, Schaal B. Dev Psychobiol. 1997;33:133–45.CrossRefGoogle Scholar
  25. Marlier L, Schaal B. Child Dev. 2005;76:155–68.PubMedCrossRefGoogle Scholar
  26. Marlier L, Gaugler C, Messer J. Pediatrics. 2005;115:83–8.PubMedCrossRefGoogle Scholar
  27. Marlier L, Schaal B, Soussignan R. Child Dev. 1998;69:611–23.PubMedGoogle Scholar
  28. Matthiesen A-S, Ransjo-Arvidson A-B, Nissen E, Uvnas-Moberg K. Birth. 2001;28:13–9.PubMedCrossRefGoogle Scholar
  29. Mennella JA, Beauchamp GK. Pediatrics. 1991;88:737–44.PubMedGoogle Scholar
  30. Mennella JA, Beauchamp GK. Pediatr Res. 1993;34:805–5.PubMedCrossRefGoogle Scholar
  31. Mennella JA, Johnson A, Beauchamp GK. Chem Senses. 1995;20:207–9.PubMedCrossRefGoogle Scholar
  32. Mikiel-Kostyra K, Mazur J, Boltruszko I. Acta Paediatr. 2002;91:1301–6.PubMedCrossRefGoogle Scholar
  33. Mizuno K, Ueda A. Early Hum Dev. 2004;76:83–90.PubMedCrossRefGoogle Scholar
  34. Mizuno K, Mizuno N, Shinohara T, Noda M. Acta Paediatr. 2004;93:1640–5.PubMedCrossRefGoogle Scholar
  35. Numan M, Insel TR. The neurobiology of parental behavior. New York: Springer-Verlag; 2003.Google Scholar
  36. Pedersen CA. Ann NY Acad Sci. 1997;807:126–45.PubMedCrossRefGoogle Scholar
  37. Porter RH, Winberg J. Neurosci Biobehav Rev. 1999;23:439–49.PubMedCrossRefGoogle Scholar
  38. Porter RH, Makin JW, Davis LB. Physiol Behav. 1991;50:907–11.PubMedCrossRefGoogle Scholar
  39. Righard L, Alade MO. Lancet. 1990;336:1105–70.PubMedCrossRefGoogle Scholar
  40. Romantshik O, Porter R, Tillmann V, Varendii H. Acta Paediatr. 2007;96:372–6.PubMedCrossRefGoogle Scholar
  41. Rovee CK. J Exp Child Psychol. 1972;13:368–81.PubMedCrossRefGoogle Scholar
  42. Russell MJ. Nature. 1976;260:520–2.PubMedCrossRefGoogle Scholar
  43. Schaal B. Presumed olfactory exchanges between mother and neonate in humans. In: LeCamus J, Cosnier J, editors. Ethology and psychology. Toulouse: Privat-IEC; 1986. p. 101–10.Google Scholar
  44. Schaal B. Chem Senses. 1988;13:145–90.CrossRefGoogle Scholar
  45. Schaal B, Marlier L. Biol Neonate. 1998;74:266–73.PubMedCrossRefGoogle Scholar
  46. Schaal B, Marlier L, Hertling E, Bolzoni D, Moyse A, Quichon R. Reprod Nutr Dev. 1980;20:843–58.PubMedCrossRefGoogle Scholar
  47. Schaal B, Marlier L, Soussignan R. Biol Neonate. 1995;67:397–406.PubMedCrossRefGoogle Scholar
  48. Schaal B, Marlier L, Soussignan R. Behav Neurosci. 1998;112:1438–49.PubMedCrossRefGoogle Scholar
  49. Schaal B, Doucet S, Sagot P, Hertling E, Soussignan R Human breast areolae as scent organs: morphological data and possible involvement in maternal-neonatal coadaptation. Dev Psychobiol. 2006;48:100–10.Google Scholar
  50. Schleidt M, Genzel C. Ethol Sociobiol. 1990;11:145–54.CrossRefGoogle Scholar
  51. Smith Jr DM, Peters TG, Donegan WL. Arch Pathol Lab Med. 1982;106:60–3.PubMedGoogle Scholar
  52. Smotherman WP. Behav Neural Biol. 1982;36:61–8.PubMedCrossRefGoogle Scholar
  53. Smotherman WP, Robinson SR. Psychobiology of fetal experience in the rat. In: Kransnegor NA, Blass EM, Hofer MA, Smotherman WP, editors. Perinatal development: a psychobiological perspective. Orlando: Academic Press; 1982. p. 39–60.Google Scholar
  54. Soussignan R, Schaal B, Marlier L, Jiang T. Physiol Behav. 1997;62:745–58.PubMedCrossRefGoogle Scholar
  55. Sullivan SA. Infant experience and acceptance of solid foods. PhD dissertation, University of Illinois at Urbana-Champaign, 1992.Google Scholar
  56. Sullivan RM, Toubas P. Biol Neonate. 1998;74:402–8.PubMedCrossRefGoogle Scholar
  57. Sullivan RM, Taborsky-Barba S, Mendoza R, Itano A, Leon M, Cotman CW, et al. Pediatrics. 1991;87:511–8.PubMedGoogle Scholar
  58. Sullivan RM, Zyzak DR, Skierkowski P, Wilson DA. Dev Brain Res. 1992;70:279–82.CrossRefGoogle Scholar
  59. Syfrett EB, Anderson GC. Very early kangaroo care beginning at birth for healthy preterm infants and mothers who choose to breastfeed: effect on outcome. Workshop on the Kangaroo-mother method for low birthweight infants. Trieste, Italy: World Health Organisation; October 1996.Google Scholar
  60. Todrank J, Wysocki CJ, Beauchamp GK. Chem Senses. 1991;16:467–82.CrossRefGoogle Scholar
  61. Uvnas-Moberg K. Psychoneuroendocrin. 1998;23:819–35.CrossRefGoogle Scholar
  62. Varendi H, Porter RH. Acta Paediatr. 2001;90:372–5.PubMedCrossRefGoogle Scholar
  63. Varendi H, Porter RH, Winberg J. Lancet. 1994;344:989–90.PubMedCrossRefGoogle Scholar
  64. Varendi H, Porter RH, Winberg J. Acta Paediatr. 1996;85:1223–7.PubMedCrossRefGoogle Scholar
  65. Varendi H, Porter RH, Winberg J. Acta Paediatr. 1997 Sep:86(9):985–90.Google Scholar
  66. Varendi H, Christensson K, Porter RH, Winberg J. Early Hum Dev. 1998;51:47–55.PubMedCrossRefGoogle Scholar
  67. Varendi H, Porter RH, Winberg J. Behav Neurosci. 2002;116:206–11.PubMedCrossRefGoogle Scholar
  68. Widstrom A-M, Wahlberg V, Matthiesen A-S, Eneroth P, Uvnas-Moberg K, Werner S, et al. Early Hum Dev. 1990;21:153–63.PubMedCrossRefGoogle Scholar
  69. Widström AM, Ransjö-Arvidson AB, Christensson K, Mathiesen AS, Winberg J, Uvnäs-Moberg K. Acta Paediatr Scand. 1987;76:566–72.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PediatricsShowa University of MedicineShinagawa-kuJapan

Personalised recommendations