Anticipatory Physiological Regulation in Feeding Biology

  • Michael L. Power
  • Jay Schulkin


Anticipatory physiological responses relevant to feeding biology were first described by Pavlov. These responses, termed cephalic phase responses, help prepare the digestive system and cue the appropriate metabolic pathways to meet the challenges associated with food ingestion. Cephalic phase responses represent a fundamental concept in regulatory physiology: anticipatory changes in state to meet expected needs. For example, there is a preabsorptive rise in circulating insulin elicited by cues that feeding is imminent; blocking this cephalic phase insulin response results in poor glucose control and, interestingly, in the ingestion of smaller meals. Cephalic phase responses have been shown to improve the efficiency of digestion and metabolism; they have been implicated in appetite and satiety as well. In this essay we examine cephalic phase responses from a functional, adaptive perspective, and consider their roles in the initiation and cessation of feeding. We consider the cephalic phase responses of insulin and ghrelin in detail. Both of these molecules act to influence physiology and metabolism in response to feeding cues. Both have been implicated as important signaling molecules in neural circuits that regulate appetite and satiety and both have been shown to be able to be entrained to a circadian rhythm. Central insulin reduces appetite; interestingly peripheral insulin acts to enable increased ingestion. In both cases it can be seen as defending homeostasis. Ghrelin is the only gut peptide known to stimulate feeding. Ghrelin also has peripheral effects that serve to assist digestion and absorption. Ghrelin appears both to stimulate feeding and to prepare the gut for food ingestion. People and rats can be trained to expect food at predictable times. When that happens circulating ghrelin will rise in anticipation of a meal, but more interestingly, circulating ghrelin will then fall after meal times even if no food is ingested, to rise again before the next scheduled meal. This is an excellent example of the function of anticipatory physiological responses. They serve to enhance the probability that animals will be in the appropriate physiological state at different parts of the circadian cycle. These anticipatory responses not only reflect long-term evolutionary adaptations; some, such as the regulation of ghrelin, respond to environmental inputs and thus can be adjusted by learning. Physiology, coordinated by the brain, anticipates as well as reacts.


Ghrelin Concentration Ghrelin Secretion Internal Milieu Sham Feeding Cephalic Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Agouti-related protein




Central nervous system

GHS receptor

Growth hormone secretory receptor


Messenger ribonucleic acid


Neuropeptide Y


Short, soluble form of the leptin receptor




  1. Ahren B, Holst JJ. Diabetes. 2001;50:1030–38.PubMedCrossRefGoogle Scholar
  2. Ariyasu H, Takaya K, Tagami T, Ogawa Y, Hosuda K, Akamizu T, Suda M, Koh T, Natusi K, Toyooka S, Shirakami G, Usui T, Shimatsu A, Doi K, Hosoda H, Kojima M, Kanagawa K, Nakao K. J Clin Endocrinol Metab. 2001;86:4753–58.PubMedCrossRefGoogle Scholar
  3. Arosio M, Ronchi CL, Beck-Peccoz P, Gebbia C, Giavoli C, Cappiello V, Conte D, Peracchi M. J Clin Endocrinol Metab. 2004;89:5101–4.PubMedCrossRefGoogle Scholar
  4. Bado A, Levasseur S, Attoub S, Kermorgant S, Laigneau JP, Bortoluzzi MN, Moizo L, Lehy T, Guerre-Millo M, Le Marchand-Brustel Y, Lewin MJ. Nature. 1998;394:790–93PubMedCrossRefGoogle Scholar
  5. Banks WA, Phillips-Conroy JE, Jolly CJ, Morley JE. J Clin Endocrinol Metab. 2001;86:4315–20.PubMedCrossRefGoogle Scholar
  6. Barrachina MD, Martinez V, Wang L, Wei JY, Tache Y. Proc Natl Acad Sci USA. 1997;94:10455–460.PubMedCrossRefGoogle Scholar
  7. Bernard C. An introduction to the study of experimental medicine, Greene, HC, trans. Dover New York: Publications; 1865.Google Scholar
  8. Berridge KC, Grill HJ, Norgren R. J Comp Physiol Psychol. 1981;95:363–82.PubMedCrossRefGoogle Scholar
  9. Berthoud HR, Trimble ER, Siegal EG, Bereiter DA, Jeanrenaud B. Am J Physiol. 1980;238:E336–40.PubMedGoogle Scholar
  10. Booth DA. J Comp Physiol Psychol. 1972;81:457–71.PubMedCrossRefGoogle Scholar
  11. Bruttomesso D, Pianta A, Mari A, Valerio A, Marescotti MC, Avogaro A, Tiengo A, Del Prato S. Diabetes. 1999;48:99–105.PubMedCrossRefGoogle Scholar
  12. Cannon WB. Am J Med Sci. 1935;189:1–14.CrossRefGoogle Scholar
  13. Chen HY, Trumbauer ME, Chen AS, Weingarth DT, Adams JR, Frazier EG, Shen Z, Marsh DJ, Feighner SD, Guan X-M, Ye Z, Nargund RP, Smith RG, Van der Ploeg LHT, Howard AD, MacNeil DJ, Qian S. Endocrinology. 2004;145:2607–12.PubMedCrossRefGoogle Scholar
  14. Clegg DJ, Riedy CA, Smith KA, Benoit SC, Woods SC. Diabetes. 2003;52:682–7.PubMedCrossRefGoogle Scholar
  15. Cowley MA, Smith RG, Diano S, Tschöp M, Pronchuk N, Grove KL, Strasburger CJ, Bidlingmaier M, Esterman M, Heiman ML, Garcis-Segura LM, Nillni EA, Mendez P, Low MJ, Sotonyi P, Friedman JM, Liu H, Pinto S, Colmers WF, Come RD, Horvath TL. Neuron. 2003;37:649–61.PubMedCrossRefGoogle Scholar
  16. Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE. Diabetes. 2001;50:1714–9.PubMedCrossRefGoogle Scholar
  17. Cummings DE, Frayo RS, Marrmonier C, Aubert R, Chapelot D. Am J Physiol Endocrinol Metab. 2004;287:E297–304.PubMedCrossRefGoogle Scholar
  18. Date Y, Nakazato M, Murakami N, Kojima M, Kangawa K, Matsukura S. Biochem Biophys Res Commun. 2001;280:904–7.PubMedCrossRefGoogle Scholar
  19. Drazen DL, Vahl TP, D’Alessio DA, Seeley RJ, Woods SC. Endocrinology. 2006;147:23–30.PubMedCrossRefGoogle Scholar
  20. Fain JN, Bahouth SW, Madan AK. Int J Obesity. 2004;28:616–22.CrossRefGoogle Scholar
  21. Faulconbridge LF, Cummings DE, Kaplan JM, Grill HJ. Diabetes. 2003;52:2260–65.PubMedCrossRefGoogle Scholar
  22. Faulconbridge LF, Grill HJ, Kaplan JM. Diabetes. 2005;54:1985–93.PubMedCrossRefGoogle Scholar
  23. Feldman M, Richardson CT. Gastroenterology. 1986;90:428–33.PubMedGoogle Scholar
  24. Frecka JM, Mattes RD. Am J Physiol Gastrointest Liver Physiol. 2008;294:G699–707.PubMedCrossRefGoogle Scholar
  25. Garcia J, Hankins WG, Rusiniak KW. Science. 1974;185:824–31.PubMedCrossRefGoogle Scholar
  26. Gentile NT, Seftchick MW, Huynh T, Kruus LK, Gaughan J. Acad Emerg Med. 2006;13:174–80.PubMedCrossRefGoogle Scholar
  27. Goto M, Arima H, Watanabe M, Hayashi M, Banno R, Sato I, Nagasaki H, Oiso Y. Endocrinology. 2006;147:5102–9.PubMedCrossRefGoogle Scholar
  28. Guilmeau S, Buyse M, Tsocas A, Laigneau JP, Bado A. Diabetes. 2003;52:1664–72.PubMedCrossRefGoogle Scholar
  29. Hallschmid M, Benedict C, Schultes B, Fem H-L, Born J, Kern W. Diabetes. 2004;53:3024–29.PubMedCrossRefGoogle Scholar
  30. Kershaw EE, Flier JS. J Clin Endocrinol Metab. 2004;89:2548–56.PubMedCrossRefGoogle Scholar
  31. Kuzawa CW, Quinn EA, Adair LS. Am J Phys Anthropol. 2007;132:642–9.PubMedCrossRefGoogle Scholar
  32. Levin F, Edholm T, Schmidt PT, Grybäck P, Jacobsson H, Degerblad M, Höybye C, Holst JJ, Rehfeld JF, Hellström PM, Näslund E. J Clin Endocrinol Metab. 2006;91:3296–302.PubMedCrossRefGoogle Scholar
  33. Lostao MP, Urdaneta E, Martinez-Anso E, Barber A, Martinez JA. FEBS Lett. 1998;423:302–6.PubMedCrossRefGoogle Scholar
  34. Matson CA, Ritter RC. Am J Physiol Regul Integr Comp Physiol. 1999;276:R1038–45.Google Scholar
  35. Moran TH, Kinzig KP. Am J Physiol Gastrointest Liver Physiol. 2004;286:G183–88.PubMedCrossRefGoogle Scholar
  36. Morton NM, Emilsson V, Liu YL, Cawthorne MA. J Biol Chem. 1998;273:26194–201.PubMedCrossRefGoogle Scholar
  37. Natalucci G, Reidl S, Gleiss A, Zidek T, Frisch H. Eur J Endocrinol. 2005;152:845–50.PubMedCrossRefGoogle Scholar
  38. Papatryphon E, Capilla E, Navarro I, Soares JH Jr. Fish Physiol Biochem. 2001;24:31–39.CrossRefGoogle Scholar
  39. Pavlov IP. The work of the digestive glands. London: Charles Griffin; 1902.Google Scholar
  40. Peters JH, Karpiel AB, Ritter RC, Simasko SM. Endocrinology. 2004;145:3652–7.PubMedCrossRefGoogle Scholar
  41. Peters JH, McKay BM, Simasko SM, Ritter RC. Am J Physiol Regul Integr Comp Physiol. 2005;288:R879–84.PubMedCrossRefGoogle Scholar
  42. Picó C, Oliver P, Sánchez J, Palou A. Br J Nutr. 2003;90:735–41.PubMedCrossRefGoogle Scholar
  43. Porte D Jr, Baskin DG, Schwartz MW. Diabetes. 2005;54:1264–76.PubMedCrossRefGoogle Scholar
  44. Power ML. In: Schulkin J, editor. Allostasis, homeostasis and the costs of adaptation. Cambridge: Cambridge University Press; 2004. pp. 343–64.Google Scholar
  45. Powley TL. Psychol. Rev. 1977;84:89–126.PubMedCrossRefGoogle Scholar
  46. Powley TL, Berthoud H-R. Am J Clin Nutr. 1985;42:991–1002.PubMedGoogle Scholar
  47. Richter CP. Ann NY Acad Sci. 1953;56:225–39.PubMedCrossRefGoogle Scholar
  48. Rozin P. In: Rosenlatt JS, Hinde RA, Shaw E, Beer C, editors. Advances in the study of behavior. New York: Academic; 1976.Google Scholar
  49. Sato N, Kanai S, Takano S, Kurosawa M, Funakoshi A, Miyasaka K. Jpn J Physiol. 2003;53:443–9.PubMedCrossRefGoogle Scholar
  50. Schulkin J. Rethinking homeostasis: Allostatic regulation in physiology and pathophysiology. Cambridge: MIT Press; 2003.Google Scholar
  51. Sobhani I, Buyse M, Goiot H, Weber N, Laigneau JP, Henin D, Soul JC, Bado A. Gastroenterology. 2002;122:259–63.PubMedCrossRefGoogle Scholar
  52. Takaya K, Ariyasu H, Kanamoto N, Iwakura H, Yoshimoto A, Harada M, Mori K, Komatsu Y, Usui T, Shimatsu A, Ogawa Y, Hosoda K, Akamizu T, Kojima M, Kangawa K, Nakao K. J Clin Endocrinol Metab. 2000;85:1169–74.CrossRefGoogle Scholar
  53. Teff KL. Appetite. 2000;34:206–13.PubMedCrossRefGoogle Scholar
  54. Teff KL, Townsend RR. Am J Physiol Regul Integr Comp Physiol. 1999;277:R198–208.Google Scholar
  55. Tritos NA, Kokkotou EG. Mayo Clin Proc. 2006;81:653–60.PubMedCrossRefGoogle Scholar
  56. Trudel L, Tomasetto C, Rio MC, Bouin M, Plourde V, Eberling P, Poitras P. Am J Physiol Gastrointest Liver Physiol. 2002;282:G948–52.PubMedGoogle Scholar
  57. West DB, Fey D, Woods SC. Am J Physiol Regul Integr Comp Physiol. 1984;246:R776–87.Google Scholar
  58. Willesen MG, Kristensen P, Rømer J. Neuroendocrinology. 1999;70:306–16.PubMedCrossRefGoogle Scholar
  59. Williams LS, Rotich J, Qi R, Fineberg N, Espay A, Bruno A, Fineberg SE, Tierney WR. Neurology. 2002;59:67–71.PubMedGoogle Scholar
  60. Woods SC Psychol Rev. 1991;98:488–505.PubMedCrossRefGoogle Scholar
  61. Woods SC. Obesity. 2006;14:171S–8S.PubMedCrossRefGoogle Scholar
  62. Woods SC, Hutton RA, Makous W. Proc Soc Exp Biol Med. 1970;133:965–8.Google Scholar
  63. Woods SC, Vasselli JR, Kaestner E, Szakmary GA, Milburn GA, Vitiello MV. J Comp Physiol Psychol. 1977;91:128–33.PubMedCrossRefGoogle Scholar
  64. Woods SC, Gotoh K, Clegg DJ. Exp Biol Med. 2003;228:1175–80.Google Scholar
  65. Wren AM, Seal LJ, Cohen MA, Byrnes AE, Frost GS, Murphy KG, Dhillo WS, Ghatei MA, Bloom SR. J Clin Endocrinol Metab. 2001a;86:5992.PubMedCrossRefGoogle Scholar
  66. Wren AM, Small CJ, Abbott CR, Dhillo WS, Seal LJ, Cohen MA, Batterham RL, Taheri S, Stanley SA, Ghatei MA, Bloom SR. Diabetes. 2001b;50:2540–47.PubMedCrossRefGoogle Scholar
  67. Zhang JV, Ren P-G, Avsian-Kretchmer O, Luo C-W, Rauch R, Klein C, Hseuh A. Science. 2005;310:996–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Research DepartmentAmerican College of Obstetricians and GynecologistsWashingtonUSA
  2. 2.Nutrition Laboratory, Conservation Ecology CenterSmithsonian National Zoological ParkWashingtonUSA

Personalised recommendations