Selective Attention as a Mediator Between Food Motivation and Disposition to Act

  • Jaime A. Pineda
  • David S. Leland


In this chapter, we present a framework for understanding how selective attention can mediate the influence of food motivation on food-related action, taking into account current research and perspectives from psychology and neuroscience. Subcortical and cortical mechanisms allow for flexible determination of food preferences and goals. The recent shift in thinking about mesolimbic dopamine function from pleasure-based explanations to ones based on reward learning, incentive salience, and behavioral effort makes clearer how mechanisms underlying motivation can produce not only relatively direct action, but also great flexibility by recruiting selective attention mechanisms, such as the forebrain acetylcholine system. Recent work with behavioral tasks, electrophysiology, and functional imaging provide evidence for attentional biases toward food-related stimuli, modulated in some cases by food deprivation and hunger conditions. Such biases may increase disposition to act via a positive feedback loop in which motivation directs attention and behavioral approach toward food-related stimuli, increasing exposure to them and thus further heightening motivational salience, and ultimately producing eating behavior. This may occur both via subcortical circuits and via modulation of cortical regions comprising the mirror neuron system which, by representing both self-executed action and action observed in others, may increase the propensity to eat when in the presence of others doing the same. Focusing on the relationship between motivation, attention, and action systems provides a goal-directed cognitive perspective on eating, with abnormalities in these interactions serving as potential risk factors for eating disorders.


Eating Disorder Selective Attention Ventral Tegmental Area Attentional Bias Spatial Attention 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Event-related potential


Functional magnetic resonance imaging


Inferior frontal gyrus


Inferior parietal lobule


Locus coeruleus


Mirror neuron system


Nucleus accumbens


Orbitofrontal cortex


Parietal frontal


Prefrontal cortex


Premotor ventral


Posterior parietal cortex


Prader-Willi syndrome


Reaction time


Supplementary motor area


Superior temporal sulcus


Ventral tegmental area



The authors thank Gabriel Loewinger for his feedback on a draft of the manuscript.


  1. Berridge KC. Physiol Behav. 2009;97:537–50.PubMedCrossRefGoogle Scholar
  2. Braet C, Crombez G. J Clin Child Adolesc. 2003;32:32–9.Google Scholar
  3. Brignell C, Griffiths T, Bradley BP, Mogg K. Appetite 2009;52:299–306.PubMedCrossRefGoogle Scholar
  4. Cavada C, Company T, Tejedor J, Cruz-Rizzolo RJ, Reinoso-Suarez F. Cereb Cortex. 2000;10:220–42.PubMedCrossRefGoogle Scholar
  5. Channon S, Hayward A. Int J Eat Disorder. 1990;9:447–52.CrossRefGoogle Scholar
  6. Cheng Y, Meltzoff AN, Decety J. Cereb Cortex. 2007;17:1979–86.PubMedCrossRefGoogle Scholar
  7. Chong TTJ, Mattingley JB. In: Pineda JA, editor. Mirror neuron systems: the role of mirroring processes in social cognition. New York: Humana; 2009. p. 213–33.Google Scholar
  8. Corbetta M, Shulman GL. Nat Rev Neurosci. 2002;3:201–15.PubMedCrossRefGoogle Scholar
  9. Craig AD. Curr Opin Neurobiol. 2003;13:500–5.PubMedCrossRefGoogle Scholar
  10. Davis C, Patte K, Levitan R, Reid C, Tweed S, Curtis C. Appetite 2007;48:12–9.PubMedCrossRefGoogle Scholar
  11. de Castro JM, de Castro ES. Am J Clin Nutr. 1989;50:237–47.PubMedGoogle Scholar
  12. Dobson KS, Dozois DJA. Clin Psychol Rev. 2004;23:1001–22.PubMedCrossRefGoogle Scholar
  13. Duncan J, Nimmo-Smith I. Percept Psychophys. 1996;58:1076–84.PubMedCrossRefGoogle Scholar
  14. Eimer M, Forster B, Van VJ, Prabhu G. Neuropsychologia.2005; 43:957–66.PubMedCrossRefGoogle Scholar
  15. Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G. Science 2005;308:662–7.PubMedCrossRefGoogle Scholar
  16. Foote SL, Berridge CW, Adams LM, Pineda JA. Prog Brain Res. 1991;88:521–32.PubMedCrossRefGoogle Scholar
  17. Formea GM, Burns GL. J Psychopathol Behav. 1996;18:105–18.CrossRefGoogle Scholar
  18. Francis JA, Stewart SH, Hounsell S. Cognitive Ther Res. 1997;21:633–46.CrossRefGoogle Scholar
  19. Gallese V, Fadiga L, Fogassi L, Rizzolatti G. Brain 1996;119:593–609.PubMedCrossRefGoogle Scholar
  20. Garcia-Segura LM, Lorenz B, Don Carlos LL. Reproduction 2008;135:419–29.PubMedCrossRefGoogle Scholar
  21. Graziano MS, Gross CG. Exp Brain Res. 1998;118:373–80.PubMedCrossRefGoogle Scholar
  22. Kemmotsu N, Murphy C. Physiol Behav. 2006;87:323–9.PubMedCrossRefGoogle Scholar
  23. Key APF, Dykens EM. J Intell Disabil Res. 2008;52:536–46.CrossRefGoogle Scholar
  24. Kok A. Psychophysiology. 2001;38:557–77.PubMedCrossRefGoogle Scholar
  25. Lavy EH, Vandenhout MA. Behav Cogn Psychoth. 1993;21:297–310.CrossRefGoogle Scholar
  26. Leland DS, Pineda JA. Clin Neurophysiol. 2006;117:67–84.PubMedCrossRefGoogle Scholar
  27. Mogg K, Bradley BP, Hyare H, Lee S. Behav Res Ther. 1998;36:227–37.PubMedCrossRefGoogle Scholar
  28. Mohanty A, Gitelman DR, Small DM, Mesulam MM. Cereb Cortex. 2008;18:2604–13.PubMedCrossRefGoogle Scholar
  29. Overduin J, Jansen A, Louwerse E. Int J Eat Disorder. 1995;18:277–85.CrossRefGoogle Scholar
  30. Parikh V, Kozak R, Martinez V, Sarter M. Neuron 2007;56:141–54.PubMedCrossRefGoogle Scholar
  31. Pecina S, Cagniard B, Berridge KC, Aldridge JW, Zhuang XX. J Neurosci. 2003;23:9395–402.PubMedGoogle Scholar
  32. Placanica JL, Faunce GJ, Job RFS. Int J Eat Disorder. 2002;32:79–90.PubMedCrossRefGoogle Scholar
  33. Posner MI, Dehaene S. Trends Neurosci. 1994;17:75–9.PubMedCrossRefGoogle Scholar
  34. Posner MI, Petersen SE. Annu Rev Neurosci. 1990;13:25–42.PubMedCrossRefGoogle Scholar
  35. Posner MI, Rothbart MK. Annu Rev Psychol. 2007;58:1–23.PubMedCrossRefGoogle Scholar
  36. Reep RL, Corwin JV. Neurobiol Learn Mem. 2009;91:104–13.PubMedCrossRefGoogle Scholar
  37. Rizzolatti G, Craighero L. Annu Rev Neurosci. 2004;27:169–92.PubMedCrossRefGoogle Scholar
  38. Rizzolatti G, Riggio L, Dascola I, Umilta C. Neuropsychologia 1987;25:31–40.PubMedCrossRefGoogle Scholar
  39. Rolls ET. Philos T Roy Soc B. 2006;361:1123–36.CrossRefGoogle Scholar
  40. Salamone JD, Correa M, Farrar A, Mingote SM. Psychopharmacology 2007;191:461–82.PubMedCrossRefGoogle Scholar
  41. Schultz W. Annu Rev Psychol. 2006;57:87–115.PubMedCrossRefGoogle Scholar
  42. Shafran R, Lee M, Cooper Z, Palmer RL, Fairburn CG. Int J Eat Disorder. 2007;40:369–80.CrossRefGoogle Scholar
  43. Siep N, Roefs A, Roebroeck A, Havermans R, Bonte ML, Jansen A. Behav Brain Res. 2009;198:149–58.PubMedCrossRefGoogle Scholar
  44. Simmons WK, Martin A, Barsalou LW. Cereb Cortex. 2005;15:1602–8.PubMedCrossRefGoogle Scholar
  45. Wang GJ, Volkow ND, Telang F, Jayne M, Ma J, Rao M, Zhu W, Wong CT, Pappas NR, Geliebter A, Fowler JS. Neuroimage 2004;21:1790–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of Wisconsin - Eau ClaireEau ClaireUSA

Personalised recommendations