Oral Administration of Phosphatide Precursors Enhances Learning and Memory by Promoting Synaptogenesis

  • Mehmet Cansev
  • Ismail H. Ulus


Chronic oral administration of various membrane phosphatide precursors (e.g., cytidine, uridine, polyunsaturated fatty acids, and choline) enhances learning and memory and improves diminished cognitive performance in experimental animals. In addition, treatment with a mixture containing the phosphatide precursors uridine, docosahexaenoic acid (DHA), and choline has been shown in a recent clinical trial to improve cognitive functions in newly recognized Alzheimer’s patients. Evidence obtained from experimental studies suggests that the most likely mechanism by which this treatment improves cognition is the enhancement in numbers of brain synapses. First off, chronic oral administration of membrane phosphatide precursors increases the levels of brain membrane phosphatides and of proteins that are known to be concentrated within synaptic membranes (e.g., PSD-95; synapsin-1). In addition, numbers of dendritic spines are enhanced after treatment with membrane phosphatide precursors. Since new brain synapses form when a dendritic spine interacts with a presynaptic terminal, it is therefore reasonable to assume that enhancing synaptogenesis is at least one of the mechanisms by which this treatment enhances learning and memory. Additional evidence supporting this hypothesis comes from studies which demonstrated enhanced release of such neurotransmitters as acetylcholine and dopamine. This review summarizes the findings on experimental and human studies of enhanced cognitive function following chronic administration of membrane phosphatide precursors and the mechanism by which brain biochemistry and structure are altered in order to enhance learning and memory.


Dendritic Spine Choroid Plexus Synaptic Protein Synaptic Membrane Choline Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Polyunsaturated fatty acid


Docosahexaenoic acid


Eicosapentaenoic acid


Arachidonic acid



























Data presented here are derived from studies in Prof. Richard Wurtman’s laboratory. The authors thank Prof. Wurtman for his support during preparation of this review.


  1. Abbracchio MP, Burnstock G, Boeynaems J-M, Barnard EA, Boyer JL. Pharmacol Rev. 2006;58:281–341.PubMedCrossRefGoogle Scholar
  2. Abumrad NA, Park JH, Park CR. J Biol Chem. 1984;259:8945–53.PubMedGoogle Scholar
  3. Alvarez XA, Laredo M, Corzo D, Fernadez-Novoa L, Mouzo R, Prea JE, Daniele D, Cacabelos R. Methods Find Exp Clin Pharmacol. 1997;19:201–10.PubMedGoogle Scholar
  4. Boehm S, Huck S, Illes P. Br J Pharmacol. 1995;116:2341–3.PubMedGoogle Scholar
  5. Burnstock G. Cell Mol Life Sci. 2007;64:1471–83.PubMedCrossRefGoogle Scholar
  6. Cansev M. Brain Res Rev. 2006;52:389–97.PubMedCrossRefGoogle Scholar
  7. Cansev M. Centr Nerv Syst Agents Med Chem. 2007;7:223–9.CrossRefGoogle Scholar
  8. Cansev M, Wurtman RJ. Neuroscience. 2007;148:421–31.PubMedCrossRefGoogle Scholar
  9. Cansev M, Ulus IH, Wang L, Maher TJ, Wurtman RJ. Neurosci Res. 2008;62:206–9.PubMedCrossRefGoogle Scholar
  10. Cansev M, Marzloff G, Sakamoto T, Ulus IH, Wurtman RJ. Dev Neurosci. 2009;31:181–92.PubMedCrossRefGoogle Scholar
  11. Darios F, Davletov B. Nature. 2006;440:813–7.PubMedCrossRefGoogle Scholar
  12. De Bruin NM, Kiliaan AJ, De Wilde MC, Broersen LM. Neurobiol Learn Mem. 2003;80:63–79.PubMedCrossRefGoogle Scholar
  13. Golczewski JA, Hiramoto RN, Chanta VK. Neurobiol Aging 1982;3:223–6.PubMedCrossRefGoogle Scholar
  14. Hashimoto M, Hossain S, Shimada T, Sugioka K, Yamasaki H. J Neurochem. 2002;81:1084–91.PubMedCrossRefGoogle Scholar
  15. Hashimoto M, Tanabe Y, Fuji Y, Kikuta T, Shibata H, Shido O. J Nutr. 2005;135:549–55.PubMedGoogle Scholar
  16. Holguin S, Huang Y, Liu J, Wurtman RJ. Behav Brain Res. 2008a;191:11–16.PubMedCrossRefGoogle Scholar
  17. Holguin S, Martinez J, Chow C, Wurtman RJ. FASEB J. 2008b;22:3938–46.PubMedCrossRefGoogle Scholar
  18. Holmes GL, Yang Y, Liu Z, Cermak JM, Sarkisian MR, Stafstrom CE, Neill JC, Blusztajn JK. Epilepsy Res. 2002;48:3–13.PubMedCrossRefGoogle Scholar
  19. Kamp F, Westerhoff HV, Hamilton JA. Biochemistry. 1993;32:11074–86.PubMedCrossRefGoogle Scholar
  20. Klein J, Koppen A, Loffelholz K. J Neurochem. 1990;55:1231–36.PubMedCrossRefGoogle Scholar
  21. Kotani S, Sakaguchi E, Warashina S, Matsukawa N, Ishikura Y, Kiso Y, Sakakibara M, Yoshimoto T, Guo J, Yamashima T. Neurosci Res. 2006;56:159–64.PubMedCrossRefGoogle Scholar
  22. Knott GW, Holtmaat A, Wilbrecht L, Welker E, Svoboda K. Nat Neurosci. 2006;9:1117–24.PubMedCrossRefGoogle Scholar
  23. Lai MK, Tan MG, Kirvell S, Hobbs C, Lee J. J Neural Transm. 2008;115:1165–72.PubMedCrossRefGoogle Scholar
  24. Marszalek JR, Kitidis C, DiRusso CC, Lodish HF. J Biol Chem. 2005;280: 10817–26.PubMedCrossRefGoogle Scholar
  25. Meck WM, Williams CL. Brain Res Dev Brain Res. 1999;118:51–9.PubMedCrossRefGoogle Scholar
  26. Milosevic J, Brandt A, Roemuss U, Arnold A, Wegner F. J Neurochem. 2006;99:913–23.PubMedCrossRefGoogle Scholar
  27. Muller D, Toni N, Buchs P-A. Hippocampus. 2000;10:596–604.PubMedCrossRefGoogle Scholar
  28. Nitsch RM, Blusztajn JK, Pittas AG, Slack BE, Growdon JH. Proc Natl Acad Sci USA. 1992;89:1671–5.PubMedCrossRefGoogle Scholar
  29. Oldendorf WH, Braun LD. Brain Res. 1976;113:219–24.PubMedCrossRefGoogle Scholar
  30. Pooler AM, Guez, DH, Benedictus R, Wurtman RJ. Neuroscience. 2005;134:207–14.PubMedCrossRefGoogle Scholar
  31. Price GD, Robertson SJ, Edwards FA. Eur J Neurosci. 2003;17:844–50.PubMedCrossRefGoogle Scholar
  32. Ramirez-Amaya V, Balderas I, Sandoval J, Escobar ML, Bermudez-Rattoni F. J Neurosci. 2001;21:7340–8.PubMedGoogle Scholar
  33. Sakamoto T, Cansev M, Wurtman RJ. Brain Res. 2007;1182:50–9.PubMedCrossRefGoogle Scholar
  34. Scheltens P, Verhey FRJ, Olde Rikkert MGM, Kamphuis PJ, Wilkinson D, Kurz A. Alzheimers Dement. 2008;4 Suppl 2:T789.CrossRefGoogle Scholar
  35. Selkoe DJ. Science. 2002;298:789–91.PubMedCrossRefGoogle Scholar
  36. Spiers, PA, Myers D, Hochanadel GS, Lieberman HR, Wurtman RJ. Arch Neurol. 1996;53:441–8.PubMedCrossRefGoogle Scholar
  37. Sweet DH, Miller DS, Pritchard JB. J Biol Chem. 2001;276:41611–9.PubMedCrossRefGoogle Scholar
  38. Teather LA, Wurtman RJ. Prog Neuro-Pyschopharmacol Biol Pyschiatry. 2003;27:711–7.CrossRefGoogle Scholar
  39. Teather LA, Wurtman RJ. Learn Mem. 2005;12:39–43.PubMedCrossRefGoogle Scholar
  40. Teather LA, Wurtman RJ. J Nutr. 2006;136:2834–7.PubMedGoogle Scholar
  41. Tees RC. Behav Brain Res. 1999;105:173–8.PubMedCrossRefGoogle Scholar
  42. Thomas JD, Garrison M, O’Neill TM. Neurotoxicol Teratol. 2004;26:35–45.PubMedCrossRefGoogle Scholar
  43. Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D. Nature. 1999;402:421–5.PubMedCrossRefGoogle Scholar
  44. Von Kugelgen I, Norenberg W, Meyer A, Illes P, Starke K. Naunyn-Schimiedeberg’s Arch Pharmacol. 1999;359:360–69.CrossRefGoogle Scholar
  45. Wang L, Pooler AM, Albrecht MA, Wurtman RJ. J Mol Neurosci. 2005;27:137–45.PubMedCrossRefGoogle Scholar
  46. Wang L, Albrecht MA, Wurtman RJ. Brain Res. 2007;1133:42–8.PubMedCrossRefGoogle Scholar
  47. Wurtman RJ, Regan M, Ulus I, Yu L. Biochem Pharmacol. 2000;60:989–92.PubMedCrossRefGoogle Scholar
  48. Wurtman RJ, Ulus IH, Cansev M, Watkins CJ, Wang L, Marzloff G. Brain Res. 2006;1088:83–92.PubMedCrossRefGoogle Scholar
  49. [V12]Wurtman RJ, Cansev M, Ulus IH (2009) In: Tettamanti G, Goracci G (eds.), Neural Lipids, Hand book of Neurochem Mol Neurobiol. Springer, Berlin-Heidelberg.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PharmacologyUludag University Medical SchoolBursaTurkey

Personalised recommendations