Leptin and the CNS

  • Jenni Harvey


It is well established that the endocrine hormone leptin circulates in the plasma and enters the brain where it plays a pivotal role in the hypothalamic regulation of energy homeostasis. However, evidence is accumulating that leptin receptors are widely expressed in the CNS and that leptin is capable of modulating numerous brain functions. In the hippocampus in particular, leptin has been shown to be an important modulator of associative learning and memory processes. Indeed, leptin-insensitive rodents display impaired hippocampal synaptic plasticity as well as defects in spatial memory tasks. Moreover, at the cellular level, leptin facilitates NMDA receptor–dependent LTP, evokes a novel form of de novo LTD, reverses LTP (depotentiation), and evokes rapid dendritic morphogenesis. There is also evidence that leptin is a potent regulator of neuronal excitability. Indeed, in the hippocampal formation, leptin can regulate pyramidal neuron excitability via either direct activation of BK channels or indirectly via modulation of the inhibitory tone onto pyramidal neurons. Leptin also regulates the excitability of other types of neurons including hypothalamic and dorsal motor nucleus neurons, via activation of potassium channels. More recent studies indicate that disturbances in the leptin system may play a role not only in healthy aging but also in the development of neurodegenerative diseases associated with cognitive deficits such as Alzheimer’s disease. Indeed, reductions in the circulating levels of leptin are common features in patients with Alzheimer’s disease. Recently, leptin has also been implicated in neuropsychological disorders as leptin has antidepressant properties and human cases of major depression have been linked to attenuated circulating leptin levels. In this chapter, we review the recent advances in leptin neurobiology. In particular, the key role of leptin in controlling extra-hypothalamic brain functions is discussed.


NMDA Receptor AMPA Receptor Excitatory Synaptic Transmission Hippocampal Synaptic Plasticity Competitive NMDA Receptor Antagonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





Beta amyloid


Alzheimer’s disease.


α-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid


Arcuate nucleus


Large conductance Ca2+-activated K+ channel.


Central nervous system


Cerebrospinal fluid


d-Amino-5-phosphonopentanoic acid


Dorsomedial nucleus


Extracellular signal regulated kinase


Excitatory postsynaptic current


Gamma-aminobutyric acid




Inhibitory postsynaptic current.


Insulin receptor substrate


Janus tyrosine kinase


ATP-sensitive K+ channel


Long-term depression


Long-term potentiation


Mitogen-activated protein kinase.




Neuropeptide Y


Leptin receptor

PI 3-kinase

Phosphoinositide 3-kinase


Protein kinase C










Signal transducer and activator of transcription


Short-term potentiation




Ventromedial nucleus



JH is funded by grants from The Cunningham Trust, The Wellcome Trust and The Anonymous Trust.


  1. Abraham WC, Gustafsson B, Wigström H. J Physiol. 1987;394:367–80.PubMedGoogle Scholar
  2. Ahmadian G, Ju W, Liu L, Wyszynski M, Lee SH, Dunah AW, et al. EMBO J. 2004;23:1040–50.PubMedCrossRefGoogle Scholar
  3. Banks WA, Farrell CL. Am J Physiol Endocrinol Metab. 2003;285:E10–5.PubMedGoogle Scholar
  4. Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM. Peptides. 1996;17:305–11.PubMedCrossRefGoogle Scholar
  5. Bates SH, Stearns WH, Dundon TA, Schubert M, Tso AW, Wang Y, et al. Nature. 2003;421:856–9.PubMedCrossRefGoogle Scholar
  6. Baumann H, Morella KK, White DW, Dembski M, Bailon PS, Kim H, et al. Proc Natl Acad Sci USA. 1996;93:8374–8.PubMedCrossRefGoogle Scholar
  7. Bjørbaek C, Elmquist JK, Michl P, Ahima RS, Van Bueren A, McCall AL, Flier JS. Endocrinology. 1998;139(8):3485–91.PubMedGoogle Scholar
  8. Clément K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D, et al. Nature. 1998;392:398–401.PubMedCrossRefGoogle Scholar
  9. Collingridge GL, Isaac JT, Wang YT. Nat Rev Neurosci. 2004;5:952–62.PubMedCrossRefGoogle Scholar
  10. Cowley MA, Smart JL, Rubinstein M, Cerdán MG, Diano S, Horvath TL, Cone RD, Low MJ. Nature. 2001;411(6836):480–4.PubMedGoogle Scholar
  11. da Silva BA, Bjørbaek C, Uotani S, Flier JS. Endocrinology. 1998;139:3681–90.PubMedCrossRefGoogle Scholar
  12. Durakoglugil M, Irving AJ, Harvey J. J Neurochem. 2005;95:396–405.PubMedCrossRefGoogle Scholar
  13. Eikelis N, Esler M, Barton D, Dawood T, Wiesner G, Lambert G. Mol Psychiatry. 2006;11:800–1.PubMedCrossRefGoogle Scholar
  14. Erbayat-Altay E, Yamada KA, Wong M, Thio LL. Neurosci Lett. 2008;433(2):82–6.PubMedCrossRefGoogle Scholar
  15. Farr SA, Banks WA, Morley JE. Peptides. 2006;27(6):1420–5.PubMedCrossRefGoogle Scholar
  16. Fewlass DC, Noboa K, Pi-Sunyer FX, Johnston JM, Yan SD, Tezapsidis N, FASEB J. 2004;18(15):1870–8.PubMedCrossRefGoogle Scholar
  17. Goldin M, Segal M. Eur J Neurosci. 2003;17:2529–39.PubMedCrossRefGoogle Scholar
  18. Hâkansson ML, Brown H, Ghilardi N, Skoda RC, Meister B. J Neurosci. 1998;18:559–72.PubMedGoogle Scholar
  19. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, et al. Science. 1995;269:543–6.PubMedCrossRefGoogle Scholar
  20. Harvey J. J Neurochem. 2007a;100:307–13.PubMedCrossRefGoogle Scholar
  21. Harvey J. Curr Opin Pharmacol. 2007b;7:643–7.PubMedCrossRefGoogle Scholar
  22. Harvey J, Hardy SC, Irving AJ, Ashford ML. J Physiol. 2000a;527(Pt 1):95–107.PubMedCrossRefGoogle Scholar
  23. Harvey J, McKay NG, Walker KS, Van der Kaay J, Downes CP, Ashford ML. J Biol Chem. 2000b;275:4660–9.PubMedCrossRefGoogle Scholar
  24. Harvey J, Shanley LJ, O’Malley D, Irving AJ. Biochem Soc Trans. 2005;33(Pt5):1029–32.PubMedCrossRefGoogle Scholar
  25. Hervey GR. J Physiol. 1958;145:336–52.Google Scholar
  26. Huang CC, Lee CC, Hsu KS. J Neurochem. 2004;89:217–31.PubMedCrossRefGoogle Scholar
  27. Ingalls AM, Dicckie MM, Snell GD. J Hered. 1950;41:317–8.PubMedGoogle Scholar
  28. Latorre R. Acta Physiol Scand Suppl. 1989;582:13.PubMedCrossRefGoogle Scholar
  29. Li XL, Aou S, Oomura Y, Hori N, Fukunaga K, Hori T. Neuroscience. 2002;113(3):607–15.PubMedCrossRefGoogle Scholar
  30. Lin S, Huang XF. NeuroReport. 1997;8:3625–9.PubMedGoogle Scholar
  31. Lu X-Y. Curr Opin Pharmacol. 2007;7:648–52.PubMedCrossRefGoogle Scholar
  32. Lu XY, Kim CS, Frazer A, Zhang W. Proc Natl Acad Sci USA. 2006 Jan 31;103(5):1593–8.PubMedCrossRefGoogle Scholar
  33. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, et al. Nat Med. 1995;1(11):1155–61.PubMedCrossRefGoogle Scholar
  34. Massey PV, Bashir ZI. Trends Neurosci. 2007;30:176–84.PubMedCrossRefGoogle Scholar
  35. Mise H, Sagawa N, Matsumoto T, Yura S, Nanno H, Itoh H, et al. J Clin Endocrinol Metab. 1998;83(9):3225–9.PubMedCrossRefGoogle Scholar
  36. Morash B, Li A, Murphy PR, Wilkinson M, Ur E. Endocrinology. 1999;140(12):5995–8.PubMedCrossRefGoogle Scholar
  37. Morikawa Y, Ueyama E, Senba E. J Neuroendocrinol. 2004;16:105–12.PubMedCrossRefGoogle Scholar
  38. Moult PR, Milojkovic B, Harvey J. J Neurochem. 2009;108:685–96.PubMedCrossRefGoogle Scholar
  39. Münzberg H, Jobst EE, Bates SH, Jones J, Villanueva E, Leshan R, Björnholm M, Elmquist J, Sleeman M, Cowley MA, Myres MG Jr. J Neurosci. 2007;27(1):69–74.PubMedCrossRefGoogle Scholar
  40. Niswender KD, Morton GJ, Stearns WH, Rhodes CJ, Myers Jr MG, Schwartz MW. Nature. 2001;413:794–5.PubMedCrossRefGoogle Scholar
  41. O’Malley D, Irving AJ, Harvey J. FASEB J. 2005;19(13):1917–9.PubMedGoogle Scholar
  42. O’Malley D, MacDonald N, Mizielinska S, Connolly CN, Irving AJ, Harvey J. Mol Cell Neurosci. 2007;35(4):559–72.PubMedCrossRefGoogle Scholar
  43. Pinto S, Roseberry AG, Liu H, Diano S, Shanabrough M, Cai X, Cai X, Friedman JM, Horvath TL. Science. 2004;304(5667):110–5.PubMedGoogle Scholar
  44. Power DA, Noel J, Collins R, O’Neill D. Dement Geriatr Cogn Disord. 2001;12(2):167–70.PubMedGoogle Scholar
  45. Proulx K, Clavel S, Nault G, Richard D, Walker CD. Endocrinology. 2001;142:4607–16.CrossRefGoogle Scholar
  46. Savioz A, Charnay Y, Huguenin C, Graviou C, Greggio B, Bouras C. NeuroReport. 1997;8:3123–6.PubMedCrossRefGoogle Scholar
  47. Schwartz MW, Seeley RJ, Campfield LA, Burn P, Baskin DG. J Clin Invest. 1996;98:1101–6.PubMedCrossRefGoogle Scholar
  48. Shanley LJ, Irving AJ, Harvey J. J Neurosci. 2001;21:RC186.PubMedGoogle Scholar
  49. Shanley LJ, Irving AJ, Rae MG, Ashford ML, Harvey J. Nat Neurosci. 2002a;5(4):299–300.PubMedCrossRefGoogle Scholar
  50. Shanley LJ, Irving AJ, Rae MG, Ashford ML, Harvey J. J Physiol. 2002b;545:933–44.PubMedCrossRefGoogle Scholar
  51. Solovyova N, Moult PR, Milojkovic B, Lambert JJ, Harvey J. J Neurochem. 2009;108:190–201.PubMedCrossRefGoogle Scholar
  52. Spanswick D, Smith MA, Groppi VE, Logan SD, Ashford ML. Nature. 1997;390:521–5.PubMedCrossRefGoogle Scholar
  53. Takahashi KA, Cone RD. Endocrinology. 2005;146(3):1043–7.PubMedCrossRefGoogle Scholar
  54. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, et al. Cell. 1995;83:1263–71.PubMedCrossRefGoogle Scholar
  55. Toro L, Wallner M, Meera P, Tanaka Y. News Physiol Sci. 1998;13:112–117.PubMedCrossRefGoogle Scholar
  56. Ur E, Wilkinson DA, Morash BA, Wilkinson M. Neuroendocrinology. 2002;75(4):264–72.PubMedCrossRefGoogle Scholar
  57. Wayner MJ, Armstrong DL, Phelix CF, Oomura Y. Peptides. 2004;25(6):991–6.PubMedCrossRefGoogle Scholar
  58. Williams KW, Zsombok A, Smith BN. Endocrinology. 2007;148(4):1868–81.PubMedCrossRefGoogle Scholar
  59. Xu L, Rensing N, Yang XF, Zhang HX, Thio LL, Rothman SM, Weisenfeld AE, Wong M, Yamada KA. JClin Invest. 2008;118(1):272–80.PubMedCrossRefGoogle Scholar
  60. Yuste R, Bonhoeffer T. Annu Rev Neurosci. 2001;24:1071–89.PubMedCrossRefGoogle Scholar
  61. Zhao AZ, Huan JN, Gupta S, Pal R, Sahu A. Nat Neurosci. 2002;5:727–8.PubMedGoogle Scholar
  62. Zhuo M, Zhang W, Son H, Mansuy I, Sobel RA, Seidman J, Kandel ER. Proc Natl Acad Sci USA. 1999 Apr 13;96(8):4650–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Division of Medical Sciences, Centre for Neuroscience, Ninewells Hospital and Medical SchoolUniversity of DundeeDundeeUK

Personalised recommendations