The Relationship between the IGF System, Nutrition, and Behavior



The insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) have ­metabolic roles as well as effects on growth and differentiation. IGF-I and IGFBP-1 are good metabolic markers, with low IGF-I and increased fasting IGFBP-1 indicating impaired nutritional status. There is compelling evidence to suggest that the actions of the IGF system in adult brain are important to learning, memory, and behavior in health and disease. In addition to local IGF system components, it is known that endocrine IGFs and IGFBPs crossing the blood-brain barrier also play a role in brain function. Impaired IGF signaling contributes to the pathophysiology of Alzheimer’s disease and to the altered cognitive function of infection and chronic inflammation. It has therefore been suggested that IGF-I may be a reasonable therapeutic option in these conditions. However, the positive effect of reduced IGF-I signaling and dietary restriction on longevity and cancer progression should be considered when targeting the IGF system in the treatment of cognitive disturbance. Future work should focus on targeting tissues for specific IGF effects and in developing guidelines and awareness of the best nutrition and exercise for optimal cognitive functioning throughout life. Further knowledge of the IGF system and nutrition in relation to behavior may be a key to understanding the integration of somatic and cognitive functioning.


Growth Hormone Hippocampal Neurogenesis Adult Hippocampal Neurogenesis Ames Dwarf Mouse 



Insulin-like growth factor


Type 1 insulin-like growth factor receptor


Insulin-like growth factor-binding protein


Growth hormone


Growth hormone receptor


Acid-labile subunit of the IGFBP-3 ternary complex




Tumor necrosis factor-alpha


  1. Åberg ND, Brywe KG, Isgaard J. TheScientificWorldJOURNAL. 2006;6:53–80.PubMedCrossRefGoogle Scholar
  2. Arai Y, Hirose N, Yamamura K, Shimizu K, Takayama M, Ebihara Y, et al. J Gerontol A Biol Sci Med Sci. 2001;56A:M79–82.CrossRefGoogle Scholar
  3. Arwert LI, Deijen JB, Drent ML. Nutr Neurosci. 2003;6:269–75.PubMedCrossRefGoogle Scholar
  4. Arwert LI, Deijen JB, Drent ML. Growth Horm IGF Res. 2005;15:416–22.PubMedCrossRefGoogle Scholar
  5. Attia N, Tamborlane WV, Heptulla R, Maggs D, Grozman A, Sherwin RS, et al. J Clin Endocrinol Metab. 1998;83:1467–71.PubMedCrossRefGoogle Scholar
  6. Bezchlibnyk YB, Xu L, Wang J-F, Young LT. Brain Res. 2007;1147:213–7.PubMedCrossRefGoogle Scholar
  7. Bluthé R-M, Kelley KW, Dantzer R. Brain Behav Immun. 2006;20:57–63.PubMedCrossRefGoogle Scholar
  8. Bondy C, Lee WH. J Neurosci. 1993;13:5092–104.PubMedGoogle Scholar
  9. Carro E, Trejo JL, Gomez-Isla T, LeRoith D, Torres-Aleman I. Nat Med. 2002;8:1390–7.PubMedCrossRefGoogle Scholar
  10. Chen MJ, Russo-Neustadt AA. Growth Factors. 2007;25:118–31.PubMedCrossRefGoogle Scholar
  11. Claeys I, Simonet G, Poels J, Van Loy T, Vercammen L, De Loof A, et al. Peptides. 2002;23:807–16.PubMedCrossRefGoogle Scholar
  12. Clemmons DR. Curr Opin Pharmacol. 2006;6:620–5.PubMedCrossRefGoogle Scholar
  13. Clemmons DR. Nat Rev Drug Discov. 2007;6:821–33.PubMedCrossRefGoogle Scholar
  14. Counts DR, Gwirtsman H, Carlsson LMS, Lesem M, Cutler GB. J Clin Endocrinol Metab. 1992;75:762–7.PubMedCrossRefGoogle Scholar
  15. Davila N, Piriz J, Trejo JL, Torres-Aleman I. Front Biosci. 2007;12:3194–202.PubMedCrossRefGoogle Scholar
  16. de la Monte SM. BMB Rep. 2009;42:475–81.PubMedCrossRefGoogle Scholar
  17. Duman CH, Schlesinger L, Terwilliger R, Russell DS, Newton SS, Duman RS. Behav Brain Res. 2009;198:366–71.PubMedCrossRefGoogle Scholar
  18. Elenkov IJ, Iezzoni DG, Daly A, Harris AG, Chrousos GP. Cytokine dysregulation, inflammation and well-being. Neuroimmunomodulation. 2005;12(5):255–69.PubMedCrossRefGoogle Scholar
  19. Falleti MG, Maruff P, Burman P, Harris A. Psychoneuroendocrinology. 2006;31:681–91.PubMedCrossRefGoogle Scholar
  20. Fernandez S, Fernandez AM, Lopez-Lopez C, Torres-Aleman I. Growth Horm IGF Res. 2007;17:89–95.PubMedCrossRefGoogle Scholar
  21. Firth SM, Baxter RC. Endocr Rev. 2002;23:824–54.PubMedCrossRefGoogle Scholar
  22. Friedlander AL, Butterfield GE, Moynihan S, Grillo J, Pollack M, Holloway L, et al. J Clin Endocrinol Metab. 2001;86:1496–503.PubMedCrossRefGoogle Scholar
  23. Frystyk J, Vestbo E, Skjaerbaek C, Mogensen CE, Ørskov H. Metabolism. 1995;10 Suppl 4:37–44.CrossRefGoogle Scholar
  24. Hoyer S. Eur J Pharmacol. 2004;490:115–25.PubMedCrossRefGoogle Scholar
  25. Khawaja X, Xu J, Liang J-J, Barrett JE. J Neurosci Res. 2004;75:451–60.PubMedCrossRefGoogle Scholar
  26. Landi F, Capoluongo E, Russo A, Onder G, Cesari M, Lulli P, et al. Growth Horm IGF Res. 2007;17:58–66.PubMedCrossRefGoogle Scholar
  27. Le Roith D, Bondy C, Yakar S, Liu JL, Butler A. Endocr Rev. 2001;22:53–74.PubMedCrossRefGoogle Scholar
  28. Lewitt MS, Baxter RC. Mol Cell Endocrinol. 1991;79:C147–52.PubMedCrossRefGoogle Scholar
  29. Lewitt MS, Hall K (2005). The insulin-like growth factor system and nutrition in adulthood and aging. In: IGF and Nutrition in Health and Disease. Houston MS, Holly J, Feldman E (eds) Humana Press, pp. 157–74.Google Scholar
  30. Lewitt MS, Denyer GS, Cooney GJ, Baxter RC. Endocrinology. 1991;129:2254–6.PubMedCrossRefGoogle Scholar
  31. Lichtenwalner RJ, Forbes ME, Bennet SA, Lynch CD, Sonntag WE, Riddle DR. Neuroscience. 2001;107:603–13.PubMedCrossRefGoogle Scholar
  32. Llorens-Martin M, Torres-Aleman I, Trejo JL. Neuroscientist. 2009;15:134–48.PubMedCrossRefGoogle Scholar
  33. Lupien SB, Bluhm EJ, Ishii DN. J Neurosci Res. 2003;74:512–23.PubMedCrossRefGoogle Scholar
  34. Malberg JE, Platt B, Rizzo SJ, Ring RH, Lucki I, Schechter LE, et al. Neuropsychopharmacol. 2007;32:2360–8.CrossRefGoogle Scholar
  35. Markowska AL, Mooney M, Sonntag WE. Neuroscience. 1998;87:559–69.PubMedCrossRefGoogle Scholar
  36. McIntyre RS, Soczynska JK, Konarski JZ, Woldeyohannes HO, Law CWY, Miranda A, et al. J Clin Psychiatry. 2007;18:257–64.Google Scholar
  37. Narasimhan SD, Yen K, Tissenbaum HA. Curr Biol. 2009;19:R657–66.PubMedCrossRefGoogle Scholar
  38. O’Connor JC, McCusker RH, Strle K, Johnson RW, Dantzer R, Kelley KW. Cell Immunol. 2008;252(1–2):91–110Google Scholar
  39. Pandini G, Frasca F, Mineo R, Sciacca L, Vigneri R, Belfiore A. J Biol Chem. 2002;22:22.Google Scholar
  40. Pembrey ME. Eur J Hum Genet. 2002;10:669–71.PubMedCrossRefGoogle Scholar
  41. Reinhardt RR, Bondy CA. Endocrinology. 1994;135:1753–61.PubMedCrossRefGoogle Scholar
  42. Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM. J Alzheimers Dis. 2005;8:247–68.PubMedGoogle Scholar
  43. Russo VC, Gluckman PD, Feldman EL, Werther GA. Endocr Rev. 2005;26:916–43.PubMedCrossRefGoogle Scholar
  44. Sara V, Carlsson-Skwirut C, Drakenberg K, Giacobini M, Håkansson L, Mirmiran M, et al. Ann NY Acad Sci. 1993;692:183–91.PubMedCrossRefGoogle Scholar
  45. Sizonenko SV, Sirimanne ES, Williams CE, Gluckman PD. Brain Res. 2001;922:42–50.PubMedCrossRefGoogle Scholar
  46. Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, et al. J Alzheimers Dis. 2005;7:63–80.PubMedGoogle Scholar
  47. Sun LY. Steven Evans M, Hsieh J, Panici J, Bartke A. Endocrinology. 2006;146:1138–44.CrossRefGoogle Scholar
  48. Trejo JL, Llorens-Martin MV, Torres-Aleman I. Mol Cell Neurosci. 2008;37:402–11.PubMedCrossRefGoogle Scholar
  49. Uhde TW, Malloy LC, Slate SO. Pharmacol Biochem Behav. 1992;43:263–9.PubMedCrossRefGoogle Scholar
  50. Undén A-L, Elofsson S, Knox S, Lewitt MS, Brismar K. Clin Endocrinol. 2002;57:793–803.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Faculty of Science & TechnologyUniversity of the West of ScotlandPaisleyUK

Personalised recommendations