Fetal–Neonatal Iron Deficiency Affects Neurotrophic Factor Expression, Neural Differentiation, and Neuroplasticity in the Rat Hippocampus

  • Michael K. Georgieff
  • Phu V. Tran


Fetal–neonatal iron deficiency anemia (IDA) causes long-lasting deficits in cognitive development and learning ability. Although certain neurological abnormalities can be corrected with iron treatment, neurotransmission and learning impairments continue to persist inspite of complete iron repletion. The etiologies of the acute and persistent effects of early-life IDA remain largely unknown. To explore the potential molecular bases of these abnormalities, we investigated the effects of early-life IDA on the expression of neurotrophic factors that mediate proliferation, differentiation, and plasticity of hippocampal neurons. We compared hippocampal expression of neurotrophic factors in male rats made iron-deficient (ID) from gestational day 2 to postnatal day (P) 7 to always iron-sufficient controls at P7, 15 and 30 with quantitative RT-PCR, Western analysis, and immunohistology. Iron deficiency up-regulated hippocampal nerve growth factor (NGF), epidermal growth factor (EGF), and glial-derived neurotrophic factor (GDNF), accompanied by an increase in p75NTR receptor expression. In contrast, iron deficiency downregulated brain-derived neurotrophic factor (BDNF) and expression of early-growth response gene-1 and -2 (Egr1 and Egr2), the downstream transcriptional targets of BDNF signaling. Doublecortin expression, a marker of differentiating neurons, was reduced during the period of peak iron deficiency, suggesting impaired neuronal differentiation in the ID hippocampus. In 65 day old formerly iron-deficient (FID) male rats that had been iron deficient during the fetal–neonatal period and treated with iron since P7, expression of BDNF remained downregulated, whereas other neurotrophic factors normalized to the always iron-sufficient control rats. Expression of BDNF activity-dependent targets 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and immediate early genes c-fos, Egr1, and Egr2) were reduced proportionately in FID rats. In turn, hippocampal expression of direct targets of Egr1 and Egr2, including hypoxia-inducible factor 1 (Hif1a), dual-specificity phosphatase 4 (Dusp4), insulin-like growth factor 2 (Igf2), and myelin basic protein (Mbp), were also diminished in FID rats. Collectively, fetal–neonatal iron deficiency impairs neuronal differentiation in the hippocampus and lowers hippocampal BDNF activity beyond the period of iron deficiency. The reduced BDNF activity and its downstream molecular cascade modulating neuronal differentiation and plasticity may underlie the acute effects and the persistent learning deficits of fetal–neonatal iron deficiency.


Nerve Growth Factor Neurotrophic Factor Iron Deficiency Iron Deficiency Anemia BDNF Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Brain-Derived Neurotrophic Factor


Ciliary Neurotrophic Factor




Dual Specificity Phosphatase 4

Egr1 and 2

Early-Growth-Response-Gene 1 and 2


Epidermal Growth Factor

ERK1 and 2

Extracellular-Signal Regulated Kinase 1 and 2


Formerly Iron-Deficient


Glial-Derived Neurotrophic Factor


Hypoxia Inducible Factor 1α


3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase






Long-Term Potentiation


Myelin Basic Protein


Mammalian Target of Rapamycin


Nerve Growth Factor


Neurotrophic Receptor p75


Postnatal Day




Quantitative RT-PCR


Tyrosine-Receptor Kinase B


TdT-Mediated biotin-dUTP Nick End Labeling



We apologize that we were unable to cite all relevant works in this article to due space constraint. We thank Heather McLaughlin for editorial assistance. This work is supported by NICHD RO1 HD29421 to MKG and NIMH Training grant T32MH073129 to PVT.


  1. Alder J, Thakker-Varia S, Bangasser DA, Kuroiwa M, Plummer MR, Shors TJ, Black IB. J Neurosci. 2003;23:10800–8.PubMedGoogle Scholar
  2. Beard JL, Wiesinger JA, Connor JR. Dev Neurosci. 2003;25:308–15.PubMedCrossRefGoogle Scholar
  3. Berasi SP, Huard C, Li D, Shih HH, Sun Y, Zhong W, Paulsen JE, Brown EL, Gimeno RE, Martinez RV. J Biol Chem. 2006;281:27167–77.PubMedCrossRefGoogle Scholar
  4. Branchi I, Francia N, Alleva E. Behav Pharmacol. 2004;15:353–62.PubMedCrossRefGoogle Scholar
  5. Bui NT, Konig HG, Culmsee C, Bauerbach E, Poppe M, Krieglstein J, Prehn JH. J Neurochem. 2002;81:594–605.PubMedCrossRefGoogle Scholar
  6. Calella AM, Nerlov C, Lopez RG, Sciarretta C, von Bohlen und Halbach O, Bereshchenko O, Minichiello L. Neural Dev. 2007;2:4.PubMedCrossRefGoogle Scholar
  7. Carlson ES, Stead JD, Neal CR, Petryk A, Georgieff MK. Hippocampus. 2007;17:679–91.PubMedCrossRefGoogle Scholar
  8. Carlson ES, Magid R, Petryk A, Georgieff MK. Brain Res. 2008;1237C:75–83.CrossRefGoogle Scholar
  9. Chao MV. Nat Rev Neurosci. 2003;4:299–309.PubMedCrossRefGoogle Scholar
  10. Chen Y, Ai Y, Slevin JR, Maley BE, Gash DM. Exp Neurol. 2005;196:87–95.PubMedCrossRefGoogle Scholar
  11. Chockalingam UM, Murphy E, Ophoven JC, Weisdorf SA, Georgieff MK. J Pediatr. 1987;111:283–6.PubMedCrossRefGoogle Scholar
  12. Clardy SL, Wang X, Zhao W, Liu W, Chase GA, Beard JL, True Felt B, Connor JR. J Neural Transm Suppl. 2006;173–96.Google Scholar
  13. Culmsee C, Gerling N, Lehmann M, Nikolova-Karakashian M, Prehn JH, Mattson MP, Krieglstein J. Neuroscience. 2002;115:1089–108.PubMedCrossRefGoogle Scholar
  14. Dieni S, Rees S. Exp Neurol. 2005;192:265–73.PubMedCrossRefGoogle Scholar
  15. Dong M, Wu Y, Fan Y, Xu M, Zhang J. Neurosci Lett. 2006;400:177–80.PubMedCrossRefGoogle Scholar
  16. Eide FF, Vining ER, Eide BL, Zang K, Wang XY, Reichardt LF. J Neurosci. 1996;16:3123–9.PubMedGoogle Scholar
  17. Erickson JT, Brosenitsch TA, Katz DM. J Neurosci. 2001;21:581–9.PubMedGoogle Scholar
  18. Felt BT, Beard JL, Schallert T, Shao J, Aldridge JW, Connor JR, Georgieff MK, Lozoff B. Behav Brain Res. 2006;171:261–70.PubMedCrossRefGoogle Scholar
  19. Francis F, Koulakoff A, Boucher D, Chafey P, Schaar B, Vinet MC, Friocourt G, McDonnell N, Reiner O, Kahn A, McConnell SK, Berwald-Netter Y, Denoulet P, Chelly J. Neuron. 1999;23:247–56.PubMedCrossRefGoogle Scholar
  20. Friedman WJ. J Neurosci. 2000;20:6340–6.PubMedGoogle Scholar
  21. Gillian AL, Svaren J. J Biol Chem. 2004;279:9056–63.PubMedCrossRefGoogle Scholar
  22. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. N Engl J Med. 2008;359:61–73.PubMedCrossRefGoogle Scholar
  23. Golub MS, Hogrefe CE, Germann SL, Capitanio JP, Lozoff B. Neurotoxicol Teratol. 2006;28:3–17.PubMedCrossRefGoogle Scholar
  24. Grosse G, Djalali S, Deng DR, Holtje M, Hinz B, Schwartzkopff K, Cygon M, Rothe T, Stroh T, Hellweg R, Ahnert-Hilger G, Hortnag H. Brain Res Dev Brain Res. 2005;156:111–26.PubMedCrossRefGoogle Scholar
  25. Guan KL, Butch E. J Biol Chem. 1995;270:7197–203.PubMedCrossRefGoogle Scholar
  26. Guenette S, Chang Y, Hiesberger T, Richardson JA, Eckman CB, Eckman EA, Hammer RE, Herz J. EMBO J. 2006;25:420–31.PubMedCrossRefGoogle Scholar
  27. Heldt SA, Stanek L, Chhatwal JP, Ressler KJ. Mol Psychiatry. 2007;12:656–70.PubMedCrossRefGoogle Scholar
  28. Hennigan A, O’Callaghan RM, Kelly AM. Biochem Soc Trans. 2007;35:424–7.PubMedCrossRefGoogle Scholar
  29. Ikin AF, Sabo SL, Lanier LM, Buxbaum JD. Mol Cell Neurosci. 2007;35:57–63.PubMedCrossRefGoogle Scholar
  30. Jang SW, LeBlanc SE, Roopra A, Wrabetz L, Svaren J. J Neurochem. 2006;98:1678–87.PubMedCrossRefGoogle Scholar
  31. Jiang B, Kitamura A, Yasuda H, Sohya K, Maruyama A, Yanagawa Y, Obata K, Tsumoto T. Eur J Neurosci. 2004;20:709–18.PubMedCrossRefGoogle Scholar
  32. Jorgenson LA, Wobken JD, Georgieff MK. Dev Neurosci. 2003;25:412–20.PubMedCrossRefGoogle Scholar
  33. Jorgenson LA, Sun M, O’Connor M, Georgieff MK. Hippocampus. 2005;15:1094–102.PubMedCrossRefGoogle Scholar
  34. Kelly A, Laroche S, Davis S. J Neurosci. 2003;23:5354–60.PubMedGoogle Scholar
  35. Klein R, Conway D, Parada LF, Barbacid M. Cell. 1990;61:647–56.PubMedCrossRefGoogle Scholar
  36. Klein RS, Rubin JB. Trends Immunol. 2004;25:306–14.PubMedCrossRefGoogle Scholar
  37. Korte M, Carroll P, Wolf E, Brem G, Thoenen H, Bonhoeffer T. Proc Natl Acad Sci U S A. 1995;92:8856–60.PubMedCrossRefGoogle Scholar
  38. Lee R, Kermani P, Teng KK, Hempstead BL. Science. 2001;294:1945–8.PubMedCrossRefGoogle Scholar
  39. Lozoff B, Georgieff MK. Semin Pediatr Neurol. 2006;13:158–65.PubMedCrossRefGoogle Scholar
  40. Lozoff B, Beard J, Connor J, Barbara F, Georgieff M, Schallert T. Nutr Rev. 2006;64:S34–S91.PubMedCrossRefGoogle Scholar
  41. Malenka RC. Nat Rev Neurosci. 2003;4:923–6.PubMedCrossRefGoogle Scholar
  42. Marty S, Carroll P, Cellerino A, Castren E, Staiger V, Thoenen H, Lindholm D. J Neurosci. 1996;16:675–87.PubMedGoogle Scholar
  43. McAllister AK, Katz LC, Lo DC. Annu Rev Neurosci. 1999;22:295–318.PubMedCrossRefGoogle Scholar
  44. Minichiello L, Calella AM, Medina DL, Bonhoeffer T, Klein R, Korte M. Neuron. 2002;36:121–37.PubMedCrossRefGoogle Scholar
  45. Miyamoto E. J Pharmacol Sci. 2006;100:433–42.PubMedCrossRefGoogle Scholar
  46. Nelson CA, Wewerka S, Thomas KM, Tribby-Walbridge S, deRegnier R, Georgieff M. Behav Neurosci. 2000;114:950–6.PubMedCrossRefGoogle Scholar
  47. Patterson SL, Grover LM, Schwartzkroin PA, Bothwell M. Neuron. 1992;9:1081–8.PubMedCrossRefGoogle Scholar
  48. Petry CD, Eaton MA, Wobken JD, Mills MM, Johnson DE, Georgieff MK. J Pediatr. 1992;121:109–14.PubMedCrossRefGoogle Scholar
  49. Pham TM, Winblad B, Granholm AC, Mohammed AH. Pharmacol Biochem Behav. 2002;73:167–75.PubMedCrossRefGoogle Scholar
  50. Pillai A, Mahadik SP. Schizophr Res. 2008;100:325–33.PubMedCrossRefGoogle Scholar
  51. Pokorny J, Yamamoto T. Brain Res Bull. 1981;7:113–20.PubMedCrossRefGoogle Scholar
  52. Rao R, Tkac I, Townsend EL, Gruetter R, Georgieff MK. J Nutr. 2003;133:3215–21.PubMedGoogle Scholar
  53. Rao R, Tkac I, Townsend EL, Ennis K, Gruetter R, Georgieff MK. J Cereb Blood Flow Metab. 2007;27:729–40.PubMedCrossRefGoogle Scholar
  54. Riggins T, Miller NC, Bauer PJ, Georgieff MK, Nelson CA. Dev Sci. 2009;12:209–19.PubMedCrossRefGoogle Scholar
  55. Rossler OG, Thiel G. Am J Physiol Cell Physiol. 2004;286:C1118–29.PubMedCrossRefGoogle Scholar
  56. Roth TL, Lubin FD, Funk AJ, Sweatt JD. Biol Psychiatry. 2009;65:760–9.PubMedCrossRefGoogle Scholar
  57. Rotwein P, Burgess SK, Milbrandt JD, Krause JE. Proc Natl Acad Sci U S A. 1988;85:265–9.PubMedCrossRefGoogle Scholar
  58. Russo-Neustadt AA, Beard RC, Huang YM, Cotman CW. Neuroscience. 2000;101:305–12.PubMedCrossRefGoogle Scholar
  59. Schmidt AT, Waldow KJ, Grove WM, Salinas JA, Georgieff MK. Behav Neurosci. 2007;121:475–82.PubMedCrossRefGoogle Scholar
  60. Schratt GM, Nigh EA, Chen WG, Hu L, Greenberg ME. J Neurosci. 2004;24:7366–77.PubMedCrossRefGoogle Scholar
  61. Schiavo G, Stenbeck G, Rothman JE, Sollner TH. Proc Natl Acad Sci USA. 1997;94:997–1001.PubMedCrossRefGoogle Scholar
  62. Siddappa AJ, Rao RB, Wobken JD, Leibold EA, Connor JR, Georgieff MK. J Neurosci Res. 2002;68:761–75.PubMedCrossRefGoogle Scholar
  63. Siddappa AM, Georgieff MK, Wewerka S, Worwa C, Nelson CA, Deregnier RA. Pediatr Res. 2004;55:1034–41.PubMedCrossRefGoogle Scholar
  64. Siegel GJ, Chauhan NB. Brain Res Rev. 2000;33:199–227.PubMedCrossRefGoogle Scholar
  65. Silhol M, Arancibia S, Perrin D, Maurice T, Alliot J, Tapia-Arancibia L. Rejuvenation Res. 2008;11:1031–40.PubMedCrossRefGoogle Scholar
  66. Sperandio S, Fortin J, Sasik R, Robitaille L, Corbeil J, de Belle I. Mol Carcinog. 2009;48:38–44.Google Scholar
  67. Steward O, Falk PM. J Comp Neurol. 1991;314:545–57.PubMedCrossRefGoogle Scholar
  68. Suzuki S, Kiyosue K, Hazama S, Ogura A, Kashihara M, Hara T, Koshimizu H, Kojima M. J Neurosci. 2007;27:6417–27.PubMedCrossRefGoogle Scholar
  69. Sweet DG, Savage G, Tubman TR, Lappin TR, Halliday HL. Arch Dis Child Fetal Neonatal Ed. 2001;84:F40–3.PubMedCrossRefGoogle Scholar
  70. Tamura T, Goldenberg RL, Hou J, Johnston KE, Cliver SP, Ramey SL, Nelson KG. J Pediatr. 2002;140:165–70.PubMedCrossRefGoogle Scholar
  71. Tang SJ, Reis G, Kang H, Gingras AC, Sonenberg N, Schuman EM. Proc Natl Acad Sci U S A. 2002;99:467–72.PubMedCrossRefGoogle Scholar
  72. Timmusk T, Palm K, Metsis M, Reintam T, Paalme V, Saarma M, Persson H. Neuron. 1993;10:475–89.PubMedCrossRefGoogle Scholar
  73. Tran PV, Carlson ES, Fretham SJB, Georgieff MK. J Nutr. 2008;138:2495–501.PubMedCrossRefGoogle Scholar
  74. Tran PV, Fretham SJ, Carlson ES, Georgieff MK. Pediatr Res. 2009;65:493–8.Google Scholar
  75. Tsuji Y, Moran E, Torti SV, Torti FM. J Biol Chem. 1999;274:7501–7.PubMedCrossRefGoogle Scholar
  76. WHO. Micronutrient deficiencies. 2008.
  77. Wong K, Sharma A, Awasthi S, Matlock EF, Rogers L, Van Lint C, Skiest DJ, Burns DK, Harrod R. J Biol Chem. 2005;280:9390–9.PubMedCrossRefGoogle Scholar
  78. Wong RW, Guillaud L. Cytokine Growth Factor Rev. 2004;15:147–56.PubMedCrossRefGoogle Scholar
  79. Woo NH, Teng HK, Siao CJ, Chiaruttini C, Pang PT, Milner TA, Hempstead BL, Lu B. Nat Neurosci. 2005;8:1069–77.PubMedCrossRefGoogle Scholar
  80. Yamada M, Ikeuchi T, Hatanaka H. Prog Neurobiol. 1997;51:19–37.PubMedCrossRefGoogle Scholar
  81. Ye P, Li L, Richards RG, DiAugustine RP, D’Ercole AJ. J Neurosci. 2002;22:6041–51.PubMedGoogle Scholar
  82. Zagrebelsky M, Holz A, Dechant G, Barde YA, Bonhoeffer T, Korte M. J Neurosci. 2005;25:9989–99.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Pediatrics, Neonatology Division & Center for Neurobehavioral Development, School of MedicineUniversity of MinnesotaMinneapolisUSA

Personalised recommendations