Dietary Copper and the Brain



Copper is an essential trace element. It is a component of a number of enzymes involved in functions that are vital for cells. Without copper, cell growth and survival are not maintained. Copper’s importance applies not only to human health, but to all of life; it is absolutely required for all cells. Conversely, excess copper is toxic and can lead to serious disorders in many organs of the body, including the brain. Therefore, a safe and adequate dietary intake of copper together with tight regulation of cellular levels is necessary to maintain good health. This chapter reviews the biological role of dietary copper in humans, the innate strategies to achieve copper homeostasis and the diseases associated with copper metabolism. Studies in yeast, a model organism, have helped to define how the cell manages copper, from its reduction to a biologically useful form, to its transport and delivery to locations in mitochondria, the Golgi apparatus, endosomes, etc., to the sequestration and efflux of copper when it is in excess. Special emphasis is given to the effects of copper in the brain. Brain copper levels alter with age and some of these alterations have been implicated with various neurodegenerative diseases, especially Alzheimer’s disease. Some of the evidence linking altered copper levels with acute and progressive diseases is presented.


Amyotrophic Lateral Sclerosis Copper Level Copper Transporter Copper Homeostasis Menkes Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


β-Amyloid Protein


Alzheimer’s Disease


daily Adequate Intake


Amyotrophic Lateral Sclerosis


Amyloid Precursor Protein


Adenosine Tri-Phosphate


Beta-Site APP Cleaving Enzyme




Bovine Spongiform Encephalopathy


Creutzfeldt-Jacob Disease


CerebroSpinal Fluid




Chronic Wasting Disease


Enzyme Commission number


Endemic Tyrolean Infantile Cirrhosis




Huntington Disease


Indian Childhood Cirrhosis


Idiopathic Copper Toxicosis


Occipital Horn Syndrome


Parkinson’s Disease


Recommended Dietary Allowance


Reactive Oxygen Species


Superoxide Dismutase


Transmissible Spongiform Encephalopathy


daily tolerable Upper intake Level


  1. Amaravadi R, Glerum DM, Tzagoloff A. Hum Genet. 1997;99:329–33.Google Scholar
  2. Arnesano F, Banci I, Bertini F, Cantini F, Ciofi-Baffoni S, Huffman DL, O’Halloran TV. J Biol Chem. 2001;276:41365–76.PubMedCrossRefGoogle Scholar
  3. Askwith C, Eide D, Van Ho A, Bernard PS, Li L, Davis-Kaplan S, Sipe DM, Kaplan J. Cell. 1994;76:403–10.PubMedCrossRefGoogle Scholar
  4. Atwood CS, Moir RD, Huang X, Scarpa RC, Bacarra NM, Romano DM, Hartshorn MA, Tanzi RE, Bush AI. J Biol Chem. 1998;273:12817–26.PubMedCrossRefGoogle Scholar
  5. Balamurugan K, Schaffner W. Biochim Biophys Acta. 2006;1763:737–46.PubMedCrossRefGoogle Scholar
  6. Bayer TA, Schafer S, Simons A, Kemmling A, Kamer T, Tepest R, Eckert A, Schussel K, Eikenberg O, Sturchler-Pierrat C, Abramowski D, Staufenbiel M, Multhaup G. Proc Natl Acad Sci USA. 2003;100:14187–92.PubMedCrossRefGoogle Scholar
  7. Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, Fraser PE, Kruck T, von Bohlen A, Schulz-Schaeffer W, Giese A, Westaway D, Kretzschmar H. Nature. 1997;390:684–7PubMedCrossRefGoogle Scholar
  8. Buchman C, Skroch P, Welch J, Fogel S, Karin M. Mol Cell Biol. 1989;9:4091–5.PubMedGoogle Scholar
  9. Bush AI. Curr Opin Chem Biol. 2000;4:184–91.PubMedCrossRefGoogle Scholar
  10. Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis I, Fraser FW, Kim Y, Huang X, Goldstein LE, Moir RD, Lim JT, Beyreuther K, Zheng H, Tanzi RE, Masters CL, Bush AI. Neuron. 2001;30:665–76.PubMedCrossRefGoogle Scholar
  11. Choi BS, Zheng W. Brain Res. 2009;1248:14–21.PubMedCrossRefGoogle Scholar
  12. Culotta VC, Klomp LW, Strain J, Casareno RL, Krems B, Gitlin JD. J Biol Chem. 1997;272:23469–72.Google Scholar
  13. Danks DM. In: Scriver CR, Beaudet AL, Sly WM, Valle D, editors. The metabolic and molecular basis of inherited disease. McGraw-Hill: New York; 1995. pp. 2211–35.Google Scholar
  14. Dancis A, Haile D, Yuan DS, Klausner RD. J Biol Chem. 1994a;269:25660–7.PubMedGoogle Scholar
  15. Dancis A, Yuan DS, Haile D, Askwith C, Eide D, Moehle C, Kaplan J, Klausner RD. Cell. 1994b;76:393–402.PubMedCrossRefGoogle Scholar
  16. de Silva D, Davis-Kaplan S, Fergestad J, Kaplan J. J Biol Chem. 1997;272:14208–13.PubMedCrossRefGoogle Scholar
  17. De Silva DM, Askwith CC, Eide D, Kaplan J. J Biol Chem. 1995;270:1098–101.PubMedCrossRefGoogle Scholar
  18. Dexter DT, Carayon A, Javoy-Agid F, Agid Y, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD. Brain. 1991;114:1953–75.PubMedCrossRefGoogle Scholar
  19. Fox JH, Kama JA, Lieberman G, Chopra R, Dorsey K, Chopra V, Volitakis I, Cherny RA, Bush AI, Hersch S. PloS One. 2007;2:e334 1–12.PubMedCrossRefGoogle Scholar
  20. Glerum DM, Shtanko A, Tzagoloff A. J Biol Chem. 1996;271:14504–9.Google Scholar
  21. Harris ZL, Takahashi Y, Miyajima H, Serizawa M, MacGillivray RT, Gitlin JD. Proc Natl Acad Sci USA. 1995;92:2539–43.PubMedCrossRefGoogle Scholar
  22. Hesse L, Beher D, Masters CL, Multhaup G. FEBS Lett. 1994;349:109–16.PubMedCrossRefGoogle Scholar
  23. Horng YC, Cobine PA, Maxfield AB, Carr HS, Winge DR. J Biol Chem. 2004;279:35334–40.Google Scholar
  24. Hornshaw MP, McDermott JR, Candy JM. Biochem Biophys Res Commun. 1995;207:621–9.PubMedCrossRefGoogle Scholar
  25. Hunt JR, Vanderpool RA. Am J Clin Nutr. 2001;74:803–7.PubMedGoogle Scholar
  26. Hyun C, Filippich LJ. J Exp Anim Sci. 2004;43:39–64.CrossRefGoogle Scholar
  27. Kampfenkel K, Kushnir S, Babiychuk E, Inze D, Van Montagu M. J Biol Chem. 1995;270:28479–86.PubMedCrossRefGoogle Scholar
  28. Karin M, Najarian R, Haslinger A, Valenzuela P, Welch J, Fogel S. Proc Natl Acad Sci USA. 1984;81:337–41.PubMedCrossRefGoogle Scholar
  29. Klevay LM. In: Coates PM, Blackman MR, Cragg GM, Levine M, Moss J, White JD, editors. Encyclopedia of dietary supplements. Marcel Dekker: USA; 2005. pp. 133–41.Google Scholar
  30. Klomp LW, Lin SJ, Yuan DS, Klausner RD, Culotta VC, Gitlin JD. J Biol Chem. 1997;272:9221–6.Google Scholar
  31. Legleiter LR, Ahola JK, Engle TE, Spears JW. Biochem Biophys Res Commun. 2007;352:884–8.PubMedCrossRefGoogle Scholar
  32. Lin SJ, Pufahl RA, Dancis A, O’Halloran TV, Culotta VC. J Biol Chem. 1997;272:9215–20.Google Scholar
  33. Linder MC. In: Massaro EJ, editor. Handbook of copper pharmacology and toxicology. Humana Press: New Jersey; 2002. pp. 3–32.CrossRefGoogle Scholar
  34. Linder MC, Hazegh-Agam M. Am J Clin Nutr. 1996;63:797S–811S.PubMedGoogle Scholar
  35. Linder MC, Wooten L, Cerveza P, Cotton S, Shulze S, Lomeli N. Am J Clin Nutr. 1998;67:965S–71S.PubMedGoogle Scholar
  36. Liu N, Lo LS, Askary SH, Jones L, Kidane TZ, Trang T, Nguyen M, Goforth J, Chu YH, Vivas E, Tsai M, Westbrook T, Linder MC. J Nutr Biochem. 2007;18:597–608.PubMedCrossRefGoogle Scholar
  37. Macreadie IG. Eur Biophys J. 2007;37:295–300.PubMedCrossRefGoogle Scholar
  38. Maynard CJ, Cappai R, Volitakis I, Cherny RA, White AR, Beyreuther K, Masters CL, Bush AI, Li QX. J Biol Chem. 2002;277:44670–76.PubMedCrossRefGoogle Scholar
  39. Mercer JFB. Trends Mol Med. 2001;7:64–9.PubMedCrossRefGoogle Scholar
  40. Montaser A, Tetreault C, Linder M. PSEBM. 1992;200:321–9.Google Scholar
  41. Morris MC, Evans DA, Tangney CC, Bienias JL, Schneider JA, Wilson RS, Scherr PA. Arch Neurol. 2006;63:1085–8.PubMedCrossRefGoogle Scholar
  42. Ohgami RS, Campagna DR, McDonald A, Fleming MD. Blood. 2006;108:1388–94.PubMedCrossRefGoogle Scholar
  43. Paik SR, Shin HJ, Lee JH, Chang CS, Kim J. Biochem J. 1999;340:821–8.PubMedCrossRefGoogle Scholar
  44. Paris I, Dagnino-Subiabre A, Marcelain K, Bennett LB, Caviedes P, Caviedes R, Azar CO, Segura-Aguilar J. J Neurochem. 2001;77:519–29.CrossRefGoogle Scholar
  45. Petris MJ, Mercer JF, Culvenor JG, Lockhart P, Gleeson PA, Camakaris J. EMBO J. 1996;15:6084–95.PubMedGoogle Scholar
  46. Phinney AL, Drisaldi B, Schmidt SD, Lugowski S, Coronado V, Liang Y, Horne P, Yang J, Sekoulidis J, Coomaraswamy J, Chishti MA, Cox DW, Mathews PM, Nixon RA, Carlson GA, St George-Hyslop P, Westaway D. Proc Natl Acad Sci USA. 2003;100:14193–8.PubMedCrossRefGoogle Scholar
  47. Portnoy ME, Schmidt PJ, Rogers RS, Culotta VC. Mol Genet Genomics. 2001;265:873–82.PubMedCrossRefGoogle Scholar
  48. Prohaska JR. Physiol Rev. 1987;67:858–901.PubMedGoogle Scholar
  49. Pufahl RA, Singer CP, Peariso KL, Lin SJ, Schmidt PJ, Fahrni CJ, Culotta VC, Penner-Hahn JE, O’Halloran TV. Science. 1997;278:853–6.Google Scholar
  50. Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O’Halloran TV. Science. 1999;284:805–8.Google Scholar
  51. Rees EM, Thiele DJ. J Biol Chem. 2007;282:21629–38.Google Scholar
  52. Rees EM, Lee J, Thiele DJ. J Biol Chem. 2004;279:54221–9. Google Scholar
  53. Schafer S, Pajonk FG, Multhaup G, Bayer TA. J Mol Med. 2007;85:405–13.PubMedCrossRefGoogle Scholar
  54. Snyder RD, Friedman MB. Mutat Res. 1998;405:1–8.PubMedCrossRefGoogle Scholar
  55. Sparks DL, Schreurs BG. Proc Natl Acad Sci USA. 2003;100:11065–9.PubMedCrossRefGoogle Scholar
  56. Spencer JP, Jenner A, Aruoma OI, Evans PJ, Kaur H, Dexter DT, Jenner P, Lees AJ, Marsden DC, Halliwell B. FEBS Lett. 1994;353:246–50.PubMedCrossRefGoogle Scholar
  57. Speziali M, Orvini E. In: Zatta P, editor. Metal ions and neurodegenerative disorders. World Sci: London; 2003. pp. 15–65.CrossRefGoogle Scholar
  58. Szczypka MS, Thiele DJ. Mol Cell Biol. 1989;9:421–9.PubMedGoogle Scholar
  59. Treiber C, Simons A, Strauss M, Hafner M, Cappai R, Bayer TA, Multhaup G. J Biol Chem. 2004;279:51958–64.PubMedCrossRefGoogle Scholar
  60. Uriu-Adams JY, Keen CL. Mol Aspect Med. 2005;26:268–98.CrossRefGoogle Scholar
  61. van den Berghe PV, Folmer DE, Malingre HE, van Beurden E, Klomp AE, van de Sluis B, Merkx M, Berger R, Klomp LW. Biochem J. 2007;407:49–59.PubMedCrossRefGoogle Scholar
  62. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M. Science. 1999;286:735–41.PubMedCrossRefGoogle Scholar
  63. Wapnir RA. Am J Clin Nutr. 1998;67:1054S–60S.PubMedGoogle Scholar
  64. Weiss KC, Linder MC. Am J Physiol. 1985;249:E77–E88.PubMedGoogle Scholar
  65. White AR, Zheng H, Galatis D, Maher F, Hesse L, Multhaup G, Beyreuther K, Masters CL, Cappai R. J Neurosci. 1998;18:6207–17.PubMedGoogle Scholar
  66. White AR, Multhaup G, Maher F, Bellingham S, Camakaris J, Zheng H, Bush AI, Beyreuther K, Masters CL, Cappai R. J Neurosci. 1999a;19:9170–9.PubMedGoogle Scholar
  67. White AR, Reyes R, Mercer JF, Camakaris J, Zheng H, Bush AI, Multhaup G, Beyreuther K, Masters CL, Cappai R. Brain Res. 1999b;842:439–44.PubMedCrossRefGoogle Scholar
  68. Winge DR, Nielson KB, Gray WR, Hamer DH. J Biol Chem. 1985;260:14464–70.PubMedGoogle Scholar
  69. Wolozin B, Wang SW, Li N-C, Lee A, Lee TA, Kazis LE. BMC Med. 2007;5:20 doi:10.1186/1741-7015-5-20.PubMedCrossRefGoogle Scholar
  70. Yamaguchi-Iwai Y, Stearman R, Dancis A, Klausner RD. EMBO J. 1996;15:3377–84.PubMedGoogle Scholar
  71. Yuan DS, Stearman R, Dancis A, Dunn T, Beeler T, Klausner RD. Proc Natl Acad Sci USA. 1995;92:2632–6.PubMedCrossRefGoogle Scholar
  72. Zatta P, Frank A. Brain Res Rev. 2007;54:19–33.PubMedCrossRefGoogle Scholar
  73. Zhou B, Gitschier J. Proc Natl Acad Sci USA. 1997;94:7481–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Bio21 InstituteUniversity of MelbourneMelbourneAustralia

Personalised recommendations