Advertisement

Dietary Zinc and the Brain

  • Mohammad Tariqur Rahman
Chapter

Abstract

Zinc (Zn), after iron, is the second most abundant essential element in different organs of the human body. The amount of Zn to be absorbed and hence utilized or metabolized in different tissues depends on the total Zn content of the diet and its bioavailability, specially its solubility in the intestinal lumen. In the brain, additional control on the absorption, distribution, and homeostasis of Zn is maintained by the blood brain barrier system which generally is not easily disrupted by dietary Zn. In the brain, [Zn] is highest in the hippocampus but this can be decreased significantly in dietary Zn deficiency. Zinc homeostasis in the brain is maintained through the regulated expression of proteins for Zn import, export, and storage. Among them, Zn2+ transporters, Zn2+ importing proteins, and Zn2+ buffering proteins, such as the metallothioneins, bind cytosolic free Zn2+ and mediate the complex intraneuronal cytosolic Zn2+ homeostasis. In addition to its important roles as catalytic, co-catalytic, and structural component of many proteins, Zn is also important as an intracellular signaling factor in the regulation of cell proliferation. As an extracellular signaling factor, Zn is involved in synaptic neurotransmission. In neuronal cells, Zn deficiency induces oxidative stress, which consequently can induce decreased cell proliferation and increased apoptosis through activation and inactivation of several Zn finger transcription factors. Acute human dietary deficiency of Zn is associated with symptoms such as anorexia, smell and taste dysfunction, emotional and cognitive disturbances, and loss of coordination and other brain functions, including learning and memory defects. The intracellular Zn2+ availability is associated with decline in brain functions and impaired cognitive performances in old age. This chapter will elaborate on the physiological importance of dietary Zn in the brain with special reference to the mechanism of Zn homeostasis, the role of dietary Zn in brain development, and the consequences of an Zn excess and/or Zn deficient condition in brain pathology.

Keywords

Ventricular Zone Brain Capillary Endothelial Cell Porcine Brain Capillary Endothelial Cell Taste Dysfunction Myoinositol Hexaphosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AD

Alzheimer’s disease

AMPA

α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid

ATP/ADP

Adenosine tri/di phosphate

BBB

Blood brain barrier

CSF

Cerebrospinal fluid

CNS

Central nervous system

ECF

Extracellular fluid

ER

Endoplasmic reticulum

MAPK

Mitogen activated protein kinase

MT

Metallothionein

RDA

Recommended daily allowance

UIL

Upper intake level

VGCC

Voltage-gated Ca2+ channels

(S)VZ

(Sub)Ventricular zone

ZIP

Zn2+ importing proteins

[Zn]

Concentration of Zn

ZnT

Zn transporter

Notes

Acknowledgments

Author is grateful to Fawzia Malik and Noor Lide Abu Kassim for their all out support during the manuscript preparation. Special thanks to Rahela Zaman for helping with the drawing of the figures.

References

  1. Araujo DM, Chabot JG, Quirion R. Int Rev Neurobiol. 1990;32:141–74.PubMedCrossRefGoogle Scholar
  2. Ashworth A, Morris SS, Lira PI, Grantham-McGregor SM. Eur J Clin Nutr. 1998;52:223–7.PubMedCrossRefGoogle Scholar
  3. Azman MS, Wan Saudi WS, Ilhami M, Mutalib MS, Rahman MT. Nutr Neurosci. 2009;12:9–12.PubMedCrossRefGoogle Scholar
  4. Barnham KJ, Bush AI. Curr Opin Chem Biol. 2008;12:222–8.PubMedCrossRefGoogle Scholar
  5. Berg JM, Shi Y. Science. 1996;271:1081–5.PubMedCrossRefGoogle Scholar
  6. Bentley ME, Caulfield LE, Ram M, Santizo MC, Hurtado E, Rivera JA, Ruel MT, Brown KH. J Nutr. 1997;127:1333–8.PubMedGoogle Scholar
  7. Bhatnagar S, Taneja S. Br J Nutr. 2001;85:S139–45.PubMedCrossRefGoogle Scholar
  8. Bhutta ZA, Black RE, Brown KH, et al. J Pediatr. 1999;135:689–97.PubMedCrossRefGoogle Scholar
  9. Black MM. Am J Clin Nutr. 1998;68:464S–9S.PubMedGoogle Scholar
  10. Blair CK, Roesler M, Xie Y, Gamis AS, Olshan AF, Heerema NA, Robison LL, Ross JA. Paediatr Perinat Epidemiol. 2008;22:288–95.PubMedCrossRefGoogle Scholar
  11. Bobilya DJ, Gauthier NA, Karki S, Olley BJ, Thomas WK. Longitudinal changes in Zn transport kinetics, metallothionein and Zn transporter expression in a blood -brain barrier model in response to a moderately excessive Zn environment. J Nutr Biochem. 2008.;19:129–37CrossRefGoogle Scholar
  12. Brown KH, Bégin F. J Pediatr Gastroenterol Nutr. 1993;17:132–8.PubMedCrossRefGoogle Scholar
  13. Brown KH, Wuehler SE, Peerson JM. Food Nutr Bull. 2001;22:113–25.Google Scholar
  14. Bryan J, Osendarp S, Hughes D, Calvaresi E, Baghurst K, van Klinken JW. Nutr Rev. 2004;62:295–306.PubMedCrossRefGoogle Scholar
  15. Bucci I, Napolitano G, Giuliani C, et al. Biol Trace Elem Res. 2001;82:273–5.PubMedCrossRefGoogle Scholar
  16. Buxani-Rice S, Ueda F, Bradbury MWB. J Neurochem. 1994;62:665–72.PubMedCrossRefGoogle Scholar
  17. Cameron HA, Woolley CS, McEwen BS, Gould E. Neurosci. 1993;56:337–44.Google Scholar
  18. Caviness VS. J Comp Neurol. 1973;151:113–20.PubMedCrossRefGoogle Scholar
  19. Chowanadisai W, Kelleher SL, Lönnerdal B. J Nutr. 2005;135:1002–7.PubMedGoogle Scholar
  20. Cole CR, Lifshitz F. Pediatr Endocrinol Rev. 2008;5:889–96.PubMedGoogle Scholar
  21. Cole TB, Wenzel HJ, Kafer KE, Schwartzkroin PA, Palmiter RD. Proc Natl Acad Sci USA. 1999;96:1716–21.PubMedCrossRefGoogle Scholar
  22. Colvin RA, Laskowski M, Fontaine CP. Brain Res. 2006;1085:1–10.PubMedCrossRefGoogle Scholar
  23. Colvin RA, Fontaine CP, Laskowski M, Thomas D. Eur J Pharmacol. 2003;479:171–85.PubMedCrossRefGoogle Scholar
  24. Dittmer PJ, Miranda JG, Gorski JA, Palmer AE. J Biol Chem. 2009;284:16289–97.PubMedCrossRefGoogle Scholar
  25. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A. Cell. 1999;97:703–16.PubMedCrossRefGoogle Scholar
  26. Dufner-Beattie J, Wang F, Kuo Y, Gitschier J, Eide D, Andrews G. J Biol Chem. 2003;278:33474–81.PubMedCrossRefGoogle Scholar
  27. Ebadi M. Biol. Trace Elem Res. 1986;11:101–16.CrossRefGoogle Scholar
  28. Edenfeld G, Pielage J, Klambt C. Curr Opin Genet Dev. 2002;12:473–7.PubMedCrossRefGoogle Scholar
  29. Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH. Nat Med. 1998;4:1313–7.PubMedCrossRefGoogle Scholar
  30. Freemont PS. Ann N Y Acad Sci. 1993;684:174–92.PubMedCrossRefGoogle Scholar
  31. Franklin PA, Pullen RGL, Hall GH. Neurochem Res. 1992;17:767–1.PubMedCrossRefGoogle Scholar
  32. Frazzini V, Rockabrand E, Mocchegiani E, Sensi SL. Biogerontology. 2006;7:307–14.PubMedCrossRefGoogle Scholar
  33. Frederickson CJ, Giblin LJ, Krezel A, et al. Exp Neurol. 2006;198:285–93.PubMedCrossRefGoogle Scholar
  34. Frederickson CJ, Koh JY, Bush AI. Nat Rev Neurosci. 2005;6:449–62.PubMedCrossRefGoogle Scholar
  35. Frederickson CJ. Int Rev Neurobiol. 1989;31:145–238.PubMedCrossRefGoogle Scholar
  36. Frederickson CJ, Danscher G. Prog Brain Res. 1990;83:71–84.PubMedCrossRefGoogle Scholar
  37. Friel JK, Andrews WL, Matthew JD et al. J Pediatr Gastroenterol Nutr. 1993;17:97–104.PubMedCrossRefGoogle Scholar
  38. Georgieff MK. Am J Clin Nutr. 2007;85:614S–20S.PubMedGoogle Scholar
  39. Gibson RS. Nutr Res Rev. 1994;7:151–73.PubMedCrossRefGoogle Scholar
  40. Goldenberg RL, Tamura T, Neggers Y, Copper RL, Johnston KE, DuBard MB, Hauth JC. J Am Med Assoc. 1995;274:463–8.CrossRefGoogle Scholar
  41. Golub MS, Keen CL, Gershwin ME, Hendrickx AG. J Nutr. 1995;125:2263–71.Google Scholar
  42. Gould E, Tanapat P, McEwen BS, Flugge G, Fuchs E. Proc Natl Acad Sci USA. 1998;95:3168–71.PubMedCrossRefGoogle Scholar
  43. Gueneau G, Privat A, Drouet J, Court L. Dev Neurosci. 1982;5:345–58.PubMedCrossRefGoogle Scholar
  44. Hambidge KM, Casey CE, Krebs NF. Zinc. In: Metz W, editor. Trace elements in human and animal nutrition. New York: Academic Press; 1986. p. 1–37.Google Scholar
  45. Hershey CO, Hershey LA, Varnes A, Vibhakar SD, Lavin P, Strain WH. Neurol. 1983;33:1350–3.Google Scholar
  46. Hershfinkel M, Silverman W, Sekler I. Mol Med. 2007;13:331–6.PubMedCrossRefGoogle Scholar
  47. Hwang JJ, Lee SJ, Kim TY, Cho JH, Koh JY. J Neurosci. 2008;28:3114–22.PubMedCrossRefGoogle Scholar
  48. Keilin D, Mann T. Biochem J. 1940;34:1163–76.PubMedGoogle Scholar
  49. Khan E. Br J Nurs. 2005;14:509–13Google Scholar
  50. Kelleher S, Lonnerdal B. J Nutr. 2003;133:3378–85.PubMedGoogle Scholar
  51. Kuhn HG, Dickinson-Anson H, Gage FH. J Neurosci. 1996;16:2027–33.PubMedGoogle Scholar
  52. Lee JY, Kim JH, Palmiter RD, Koh JY. Exp Neurol. 2003;184:337–47.PubMedCrossRefGoogle Scholar
  53. Lehmann H, Brothwell B, Volak L, Bobilya D. J Nutr. 2002;132:2763–8.PubMedGoogle Scholar
  54. Licastro F, Mariani RA, Faldella G, Carpenè E, Guidicini G, Rangoni A, Grilli T, Bazzocchi G. Brain Res Bull. 2001;55:313–7.PubMedCrossRefGoogle Scholar
  55. Lima AS, Cardoso BR, Cozzolino SF. Biol Trace Elem Res. Nutritional status of zinc in children with Down syndrome. 2010;133:20–8.Google Scholar
  56. Lowe NM, Fekete K, Decsi T. Am J Clin Nutr. 2009;89:2040S–51S.PubMedCrossRefGoogle Scholar
  57. MacDonald RS. J Nutr. 2000;130:1500S–8S.PubMedGoogle Scholar
  58. Mackenzie GG, Zago MP, Aimo L, Oteiza PI. IUBMB Life. 2007;59:299–307.PubMedCrossRefGoogle Scholar
  59. Maret W, Sandstead HH. Exp Gerontol. 2008;43:378–81.PubMedCrossRefGoogle Scholar
  60. McLaughlin B, Pal S, Tran MP, Parsons AA, Barone FC, Erhardt JA, Aizenman E. J Neurosci. 2001;21:3303–11.PubMedGoogle Scholar
  61. Mocchegiani E, Bertoni-Freddari C, Marcellini F, Malavolta M. Prog Neurobiol. 2005;75:367–90.PubMedCrossRefGoogle Scholar
  62. Moskowitz MA, Lo EH. 2003;34:324–6.Google Scholar
  63. Nakashima AS, Dyck RH. Brain Res Rev. 2009;59:347–73.PubMedCrossRefGoogle Scholar
  64. Nowakowski RS, Rakic P. J Comp Neurol. 1981;196:129–54.PubMedCrossRefGoogle Scholar
  65. Ohana E, Hoch E, Keasar C, Kambe T, Yifrach O, Hershfinkel M, Sekler I. Biol Chem. 2009;284:17677–86.CrossRefGoogle Scholar
  66. Pal S, Hartnett KA, Nerbonne JM, Levitan ES, Aizenman E. Neurochem Int. 2003;52:241–6.Google Scholar
  67. Prasad AS. In: Connor JR, editor. Metals and oxidative damage in neurological disorders. New York: Plenum Press; 1997. p. 95–111.Google Scholar
  68. Qian J, Noebels JL. J Physiol. 2005;566: 747–758PubMedCrossRefGoogle Scholar
  69. Rakic P. Neurosci Res Prog Bull. 1982;20:439–51.Google Scholar
  70. Ronowska A, Gul-Hinc S, Bielarczyk H, Pawelczyk T, Szutowicz A. J Neurochem. 2007;103:972–83.PubMedCrossRefGoogle Scholar
  71. Root AW, Duckett G, Sweetland M, Reiter EO. J Nutr. 1979;109:958–64.PubMedGoogle Scholar
  72. Roth HP, Kirchgessner M. Horm Metab Res. 1994;26:404–8.PubMedCrossRefGoogle Scholar
  73. Ruiz A, Walker MC, Fabian-Fine R, Kullmann DM. J Neurophysiol. 2004;91:1091–6.PubMedCrossRefGoogle Scholar
  74. Salgueiro MJ, Zubillaga M, Lysionek A et al. Nutr Res. 2007;20:737–55.PubMedGoogle Scholar
  75. Sazawal S, Bentley M, Black RE, Dhingra P, George S, Bhan MK. Pediatrics. 1996;98:1132–7.PubMedGoogle Scholar
  76. Sensi SL, Paoletti P, Bush AI, Sekler I. Nat Rev Neurosci. 2009;10:780–91.PubMedCrossRefGoogle Scholar
  77. Sensi SL, Ton-That D, Sullivan PG, Jonas EA, Gee KR, Kaczmarek LK, Weiss JH. Proc Natl Acad Sci USA. 2003;100:6157–62.PubMedCrossRefGoogle Scholar
  78. Sensi SL, Canzoniero LMT, Yu SP, Ying HS, Koh JY, Kerchner GA, Choi DW. J Neurosci. 1997;15:9554–64.Google Scholar
  79. Solomons NW. Nutr Rev. 1998;56:280–1.PubMedCrossRefGoogle Scholar
  80. Soto-Quintana M, Alvarez-Nava F, Rojas-Atencio A, Granadillo V, Fernández D, Ocando A, López E, Fulcado W, et al. Invest Clin. 2003;44:51–60.PubMedGoogle Scholar
  81. Stanfield BB, Trice JE. Exp Brain Res. 1988;72:399–406.PubMedGoogle Scholar
  82. Takeda A, Kanno S, Sakurada N, Ando M, Oku N. J Neurosci Res. 2008;86:2906–11.PubMedCrossRefGoogle Scholar
  83. Takeda A. BioMetals. 2001;14:343–52.PubMedCrossRefGoogle Scholar
  84. Takeda A. Brain Res Rev. 2000;34:137–48.PubMedCrossRefGoogle Scholar
  85. Takeda A, Tamano H. Brain Res Rev. 2009;62:33–44.PubMedCrossRefGoogle Scholar
  86. Takeda A, Minami A, Seki Y, Oku N. J Neurosci Res. 2004;75:225–9.PubMedCrossRefGoogle Scholar
  87. Valente T, Junyent F, Auladell C. Dev Dyn. 2005;233:667–79.PubMedCrossRefGoogle Scholar
  88. Vallee BL, Falchuk KH. Physiol Rev. 1993;73:79–118.PubMedCrossRefGoogle Scholar
  89. Varrault A, Ciani E, Apiou F, Bilanges B, Hoffmann A, Pantaloni C, Bockaert J, Spengler D, Journot L. Proc Natl Acad Sci USA. 1998;95:8835–40.PubMedCrossRefGoogle Scholar
  90. Weiss JH, Sensi SL, Koh JY. Trends Pharmacol Sci. 2000;21:395–401.PubMedCrossRefGoogle Scholar
  91. Yasui N, Nogi T, Kitao T, Nakano Y, Hattori M, Takagi J. Proc Natl Acad Sci USA. 2007;104:9988–93.PubMedCrossRefGoogle Scholar
  92. Zago MP, Mackenzie GG, Adamo AM, Keen CL, Oteiza PI. Antioxid Redox Signal. 2005;7:1773–82.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Biomedical Science, Kulliyyah of ScienceInternational Islamic University Malaysia (IIUM)KuantanMalaysia

Personalised recommendations