Food Deprivation: A neuroscientific perspective

  • Harald T. Schupp
  • Britta Renner


Deprivation of food has powerful effects on almost every aspect of food-related anticipatory and consummatory behaviors. Prolonged periods of starving are one of the most tragic experiences of humanity and in these periods, thoughts about food crowd mental life. However, even mild periods of deprivation are effective in eliciting appetitive behaviors, including the increase of food consumption and reinforcer value of food. Neuroimaging methods provide a new avenue to study deprivation effects on food stimulus processing at the level of neural structures and subprocesses. Similar to the study of fear, this perspective is informed by animal research about the organization of the feeding system. Research is reviewed regarding the hypothesis that food deprivation increases the incentive value of food stimuli and regulates attention processes. Core elements of the experimental protocols are summarized and hemodynamic, electrophysiological, and reflexive measures of brain activity briefly introduced. Overall, it is concluded that neuroscientific studies provide preliminary support regarding both hypotheses. However, the number of studies addressing deprivation effects with neuroimaging methods is sparse. Accordingly, a more systematic research effort is needed to reveal reliable and consistent findings associated with food deprivation and the regulation of ingestive behaviors by internal states. This line of research is promising for providing a framework yielding greater insight into the impact of voluntary restriction of food intake such as dieting, restrained eating, and eating-related disorders.


Food Deprivation Blood Oxygenation Level Dependent Orbitofrontal Cortex Insular Cortex Late Positive Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Agouti-related protein


Blood oxygenation level dependent




Event related potential


Functional magnetic resonance imaging


Lithium chloride


Late positive potential


Minimum norm estimate




Neuropeptide Y


Positron emission tomography




Regional cerebral blood flow


Region of interest



We thank Tobias Flaisch and Christoph Becker for their feedback on an earlier version of this manuscript. This work was supported by the German Research Foundation (grant Schu 1074/11-2, Schu 1074/10-3), by the European Community FP7 (grant ‘TEMPEST’, 223488), and the German Federal Ministry of Education and Research (grant ‘EATMOTIVE’, 0315671).


  1. Arana FS, Parkinson JA, Hinton E, Holland AJ, Owen AM, Roberts AC. J Neurosci. 2003;23:9632–8.PubMedGoogle Scholar
  2. Barbano MF, Cador M. Behav Neurosci. 2005;119:1244–53.PubMedCrossRefGoogle Scholar
  3. Beaver JD, Lawrence AD, van Ditzhuijzen J, Davis MH, Woods A, Calder AJ. J Neurosci. 2006;26:5160–6.PubMedCrossRefGoogle Scholar
  4. Bender G, Veldhuizen MG, Meltzer JA, Gitelman DR, Small DM. Eur J Neurosci. 2009;30:327–38.PubMedCrossRefGoogle Scholar
  5. Berridge KC, Kringelbach, ML. Psychopharmacology 2008;199:457–80.PubMedCrossRefGoogle Scholar
  6. Berthoud HR, Morrison C. Annu Rev Psychol. 2008;59:55–92.PubMedCrossRefGoogle Scholar
  7. Cornier MA, Von Kaenel SS, Bessesen DH, Tregellas JR. Am J Clin Nutr. 2007;86:965–71.PubMedGoogle Scholar
  8. Cornier MA, Salzberg AK, Endly DC, Bessesen DH, Rojas DC, Tregellas JR. PLoS One. 2009;4:e6310.PubMedCrossRefGoogle Scholar
  9. Critchley HD, Rolls ET. J Neurophysiol. 1996;75:1673–86.PubMedGoogle Scholar
  10. Del Cul A, Baillet S, Dehaene S. PLoS Biol. 2007;5:2408–23.CrossRefGoogle Scholar
  11. Delparigi A, Gautier JF, Chen K, Salbe AD, Ravussin E, Reiman E, Tataranni, PA. Ann N Y Acad Sci. 2002;967:389–97.Google Scholar
  12. Delparigi A, Chen K, Salbe AD, Reiman EM, Tataranni PA. NeuroImage. 2005;24:436–43.PubMedCrossRefGoogle Scholar
  13. Drobes DJ, Miller EJ, Hillman CH, Bradley MM, Cuthbert BN, Lang PJ. Biol Psychol. 2001;57:153–77.PubMedCrossRefGoogle Scholar
  14. Goldstone AP, de Hernandez CG, Beaver JD, Muhammed K, Croese C, Bell G, Durighel G, Hughes E, Waldman AD, Frost G, Bell JD. Eur J Neurosci. 2009;30:1625–35.PubMedCrossRefGoogle Scholar
  15. Gottfried JA, O’Doherty J, Dolan RJ. Science 2003;301:1104–7.PubMedCrossRefGoogle Scholar
  16. Haase L, Cerf-Ducastel B, Murphy C. NeuroImage 2009;44:1008–21.PubMedCrossRefGoogle Scholar
  17. Hinton EC, Parkinson JA, Holland AJ, Arana FS, Roberts AC, Owen AM. Eur J Neurosci. 2004;20:1411–8.PubMedCrossRefGoogle Scholar
  18. Holland PC, Gallagher M. Curr Opin Neurobiol. 2004;14:148–55.PubMedCrossRefGoogle Scholar
  19. Holsen LM, Zarcone JR, Thompson TI, Brooks WM, Anderson MF, Ahluwalia JS, Nollen NL, Savage CR. NeuroImage 2005;27:669–76.PubMedCrossRefGoogle Scholar
  20. Junghöfer M, Peyk P, Flaisch T, Schupp HT. Prog Brain Res. 2006;156:123–43.PubMedCrossRefGoogle Scholar
  21. Kalivas PW, Nakamura M. Curr Opin Neurobiol. 1999;9:223–7.PubMedCrossRefGoogle Scholar
  22. Keys A, Brozek J, Henschel A, Mickelson O, Taylor HL. The biology of human starvation. 2 vols. Minneapolis: University of Minnesota Press; 1950.Google Scholar
  23. Killgore WD, Young AD, Femia LA, Bogorodzki P, Rogowska J, Yurgelun-Todd DA. NeuroImage 2003;19:1381–94.PubMedCrossRefGoogle Scholar
  24. Kringelbach ML, O’Doherty J, Rolls ET, Andrews C. Cereb Cortex. 2003;13:1064–71.PubMedCrossRefGoogle Scholar
  25. Lang PJ, Bradley, MM, Cuthbert BN (2008). International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Technical Report A-8. University of Florida, Gainesville, FL.PubMedCrossRefGoogle Scholar
  26. LaBar KS, Gitelman DR, Parrish TB, Kim YH, Nobre AC, Mesulam MM. Behav Neurosci. 2001;115:493–500.PubMedCrossRefGoogle Scholar
  27. Logothetis NK. Nature 2008;12:869–78.CrossRefGoogle Scholar
  28. Mauler BI, Hamm AO, Weike AI, Tuschen-Caffier B. J Abnorm Psychol. 2006;115:567–79.PubMedCrossRefGoogle Scholar
  29. Miller MW, Patrick CJ, Levenston GK. Psychophysiology 2002;39:519–29.PubMedCrossRefGoogle Scholar
  30. Mohanty A, Gitelman DR, Small DM, Mesulam MM. Cereb Cortex. 2008;18:2604–13.PubMedCrossRefGoogle Scholar
  31. Morris JS, Dolan RJ. J Neurosci. 2001;21:5304–10.PubMedGoogle Scholar
  32. O’Doherty J, Rolls ET, Francis S, Bowtell R, McGlone F, Kobal G, Renner B, Ahne G. Neuroreport 2000;11:893–7.PubMedCrossRefGoogle Scholar
  33. Öhman A. Psychophysiology 1986;23:123–45.PubMedCrossRefGoogle Scholar
  34. Pavlov IP. Zwanzigjährige Erfahrungen mit dem objektiven Studium der höheren Nerventätigkeit (des Verhaltens) der Tiere. Berlin: Akademischer; 1953.Google Scholar
  35. Petrovich GD, Holland PC, Gallagher M. J Neurosci. 2005;25:8295–302.PubMedCrossRefGoogle Scholar
  36. Petrovich GD, Ross CA, Mody P, Holland PC, Gallagher M. J Neurosci. 2009;29:15205–12.PubMedCrossRefGoogle Scholar
  37. Pickens CL, Saddoris MP, Setlow B, Gallagher M, Holland PC, Schoenbaum G. J Neurosci. 2003;23:11078–84.PubMedGoogle Scholar
  38. Piech RM, Lewis J, Parkinson CH, Owen AM, Roberts AC, Downing PE, Parkinson JA. PLoS One. 2009;4:e6581.PubMedCrossRefGoogle Scholar
  39. Polivy J. J Am Diet Assoc. 1996;96:589–92.PubMedCrossRefGoogle Scholar
  40. Porubská K, Veit R, Preissl H, Fritsche A, Birbaumer N. NeuroImage 2006;32:1273–80.PubMedCrossRefGoogle Scholar
  41. Raynor HA, Epstein LH. Appetite 2003;40:15–24.PubMedCrossRefGoogle Scholar
  42. Schienle A, Schäfer A, Hermann A, Vaitl D. Biol Psychiatry. 2009;65:654–61.PubMedCrossRefGoogle Scholar
  43. Schupp HT, Flaisch T, Stockburger J, Junghofer M. Prog Brain Res. 2006;156:31–51.PubMedCrossRefGoogle Scholar
  44. Schupp HT, Stockburger J, Codispoti M, Junghöfer M, Weike AI, Hamm AO. J Neurosci. 2007;27:1082–9.PubMedCrossRefGoogle Scholar
  45. Siep N, Roefs A, Roebroeck A, Havermans R, Bonte ML, Jansen A. Behav Brain Res. 2009;198:149–58.PubMedCrossRefGoogle Scholar
  46. Small DM, Zatorre RJ, Dagher A, Evans AC, Jones-Gotman M. Brain 2001;124:1720–33.PubMedCrossRefGoogle Scholar
  47. Smith KS, Tindell AJ, Aldridge JW, Berridge KC. Behav Brain Res. 2009;196:155–67.PubMedCrossRefGoogle Scholar
  48. Spiegel TA, Shrager EE, Stellar E. Appetite 1989;13:45–69.PubMedCrossRefGoogle Scholar
  49. Stockburger J, Weike AI, Hamm AO, Schupp HT. Behav Neurosci. 2008;122:936–42.PubMedCrossRefGoogle Scholar
  50. Stockburger J, Schmalzle R, Flaisch T, Bublatzky F, Schupp HT. NeuroImage 2009a;47:1819–29.PubMedCrossRefGoogle Scholar
  51. Stockburger J, Renner B, Weike A, Hamm AO, Schupp HT. Appetite 2009b;52:513–6.PubMedCrossRefGoogle Scholar
  52. Swanson LW. Brain Res. 2000;886:113–64.PubMedCrossRefGoogle Scholar
  53. Tataranni PA, Gautier JF, Chen K, Uecker A, Bandy D, Salbe AD, Pratley RE, Lawson M, Reiman EM, Ravussin E. Proc Natl Acad Sci USA. 1999;96:4569–74.PubMedCrossRefGoogle Scholar
  54. Timberlake W. In: Mowrer RR, Klein SB, editors. Handbook of contemporary learning theories. Mahwah: Erlbaum; 2001. p. 155–209.Google Scholar
  55. Timberlake W, Allison J. Psychol Rev. 1974;81:146–64.CrossRefGoogle Scholar
  56. Toates FM. Appetite 1981;2:35–50.PubMedCrossRefGoogle Scholar
  57. Uher R, Treasure J, Heining M, Brammer MJ, Campbell IC. Behav Brain Res. 2006;169:111–9.PubMedCrossRefGoogle Scholar
  58. Watts AG, Swanson LW. In: Gallistel CR, Pashler H, editors. Stevens’ handbook of experimental psychology, volume 3, learning, motivation, and emotion. New York: Wiley; 2002. p. 563–631.Google Scholar
  59. Woods SC, Schwartz MW, Baskin DG, Seeley RJ. Annu Rev Psychol. 2000;51:255–77.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of KonstanzKonstanzGermany

Personalised recommendations