Perinatal Undernutrition and Brain-Derived Neurotrophic Factor

  • Didier Vieau
  • Sylvain Mayeur
  • Marie-Amélie Lukaszewski
  • Fabien Delahave
  • Isabelle Dutriez-Casteloot
  • Christine Laborie
  • Sylvie Deloof
  • Jean Lesage
  • Christophe Breton


There is now compelling evidence, coming both from animal and human studies, that perinatal alterations such as maternal undernutrition may result in developmental adaptations that permanently change the morphology, physiology, and metabolism in offspring, thereby predisposing individuals to several chronic diseases in adult life. This has led to the notion that some cognitive (depression), psychiatric (schizophrenia), neurodegenerative (Alzheimer disease), and metabolic (hypertension, type 2 diabetes, and obesity) illnesses could be “programmed” during early development. Among the molecules putatively involved in the so-called “Developmental Origin of Health and Adult Diseases,” brain-derived neurotrophic factor is a likely candidate since it plays crucial roles during central nervous system maturation and development. Interestingly, a data have increasingly shown that brain-derived neurotrophic factor exerts an important role in the regulation of energy homeostasis. Indeed, brain-derived neurotrophic factor system alterations are associated with metabolic dysfunctions such as obesity and hyperphagia. We have shown recently that maternal perinatal undernutrition modified both brain-derived neurotrophic factor content and cell proliferation in the central nervous system of the male rat neonate. In view of these data, this chapter selectively focuses on the most recent findings supporting the idea that the brain-derived neurotrophic factor shares the dual role of regulating both energy homeostasis and neural plasticity. It could thus be implicated in the altered perinatal growth and in the increased prevalence of adult diseases frequently observed in offspring of undernourished mothers.


Anorexia Nervosa Bulimia Nervosa BDNF Level Adult Disease Central Nervous System Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Alzheimer Disease


Anorexia Nervosa


Brain-Derived Neurotrophic Factor


Bulimia Nervosa




Central Nervous System


Dorsomedial Hypothalamus


Developmental Origin of Health and Adult Diseases


Embryonic Day


50% Food Restriction


Huntington Disease






Maternal Perinatal Undernutrition


Postnatal Day


Proprotein Convertase


Peripheral Nervous System




p75 Neurotrophin Receptor




Tyrosine Kinase Receptor B


Ventromedial Hypothalamus



We are grateful to V. Montel, A. Dickes-Coopman and F. Lefevre for technical assistance. This study was supported by the Conseil Régional du Nord-Pas-de-Calais.


  1. Barker DJ. Clin Obstet Gynecol. 2006;49:270–83.PubMedCrossRefGoogle Scholar
  2. Boesmans W, Gomes P, Janssens J, Tack J, Vanden Berghe P. Gut. 2008;57:314–22.PubMedCrossRefGoogle Scholar
  3. Bouret SG, Simerly RB. Clin Genet. 2006;70:295–301.PubMedCrossRefGoogle Scholar
  4. Bouvier J, Autran S, Fortin G, Champagnat J, Thoby-Brisson M. J Physiol. 2006;100:290–6.Google Scholar
  5. Breton C, Lukaszewski MA, Risold PY, Enache M, Guillemot J, Rivière G, Delahaye F, Lesage J, Dutriez-Casteloot I, Laborie C, Vieau D. Am J Physiol Endocrinol Metab. 2009;296:E462-72.PubMedCrossRefGoogle Scholar
  6. Burton CL, Chatterjee D, Chatterjee-Chakraborty M, Lovic V, Grella SL, Steiner M, Fleming AS. Brain Res. 2007;1158:28–38.PubMedCrossRefGoogle Scholar
  7. Caldwell KK, Sheema S, Paz RD, Samudio-Ruiz SL, Laughlin MH, Spence NE, Roehlk MJ, Alcon SN, Allan AM. Pharmacol Biochem Behav. 2008;90:614–24.PubMedCrossRefGoogle Scholar
  8. Chang KL, Tong KY, Yip SP. Neurosci Lett. 2008;447:124–8.CrossRefGoogle Scholar
  9. Coupé B, Dutriez-Casteloot I, Breton C, Lefèvre F, Mairesse J, Dickes-Coopman A, Silhol M, Tapia-Aranciabia L, Lesage J, Vieau D. J Neuroendocrinol. 2009;21:40–8.PubMedCrossRefGoogle Scholar
  10. Das KP, Chao SL, White LD, Haines WT, Harry GJ, Tilson HA, Barone S. Neuroscience. 2001;103:739–61.PubMedCrossRefGoogle Scholar
  11. Delahaye F, Breton C, Risold PY, Enache M, Dutriez-Casteloot I, Laborie C, Lesage J, Vieau D. Endocrinology. 2008;149:470–5.PubMedCrossRefGoogle Scholar
  12. Ginés S, Bosch M, Marco S, Gavaldà N, Díaz-Hernández M, Lucas JJ, Canals JM, Alberch J. Eur J Neurosci. 2006;23:649–58.PubMedCrossRefGoogle Scholar
  13. Gomez-Pinilla F, Vaynman S. Exp Neurol. 2005;192:235–43.PubMedCrossRefGoogle Scholar
  14. Hennigan A, O’Callaghan RM, Kelly AM. Biochem Soc Trans. 2007;35:424–7.PubMedCrossRefGoogle Scholar
  15. Hernandez A, Burgos H, Mondaca M, Barra R, Nunez H, Perez H, Soto-Moyano R, Sierralta W, Fernandez V, Olivares A, Valladares L. Neural Plast. 2008;646–919.CrossRefGoogle Scholar
  16. Hu Y, Russek SJ. J Neurochem. 2008;105:1–17.PubMedCrossRefGoogle Scholar
  17. Kikusui T, Mori Y. J Neuroendocrinol. 2009;21:427–31.Google Scholar
  18. Kodomari I, Wada E, Nakamura S, Wada K. Neurochem Int. 2009;54:95–8.PubMedCrossRefGoogle Scholar
  19. Krabbe KS, Nielsen AR, Krogh-Madsen R, Plomgaard P, Rasmussen P, Erikstrup C, Fischer CP, Lindegaard B, Petersen AM, Taudorf S, Secher NH, Pilegaard H, Bruunsgaard H, Pedersen BK. Diabetologia. 2007;50:431–8.PubMedCrossRefGoogle Scholar
  20. Lapchak PA, Hefti F (1992) Neuroreport. 3: 405–408PubMedCrossRefGoogle Scholar
  21. Lesage J, Del-Favero F, Léonhardt M, Louvart H, Maccari S, Vieau D, Darnaudéry M. J Endocrinol. 2004;181:291–6.PubMedCrossRefGoogle Scholar
  22. Lesage J, Sebaai N, Léonhardt M, Dutriez-Casteloot I, Breton C, Deloof S, Vieau D. Stress. 2006;9:183–98.PubMedCrossRefGoogle Scholar
  23. Lommatzsch M, Hornych K, Zingler C, Schuff-Werner P, Höppner J, Virchow JC. Psychoneuroendocrinology. 2006;31:388–94.PubMedCrossRefGoogle Scholar
  24. Lyons WE, Mamounas LA, Ricaurte GA, Coppola V, Reid SW, Bora SH, Wihler C, Koliatsos VE, Tessarollo L. Proc Natl Acad Sci USA. 1999;96:15239–44.PubMedCrossRefGoogle Scholar
  25. Martin JL, Jenkins VK, Hsieh HY, Balkowiek A. J Neurochem. 2009;108:450–64.PubMedCrossRefGoogle Scholar
  26. Monteleone P, Fabrazzo M, Martiadis V, Serritella C, Pannuto M, Maj M. Psychol Med. 2005;35:897–905.PubMedCrossRefGoogle Scholar
  27. Mowla JS, Farhadi HF, Pareek S, Atwal JK, Morris SJ, Seidah NG, Murphy RA. J Biol Chem. 2001;276:12660–6.PubMedCrossRefGoogle Scholar
  28. Nagahara AH, Merrill DA, Coppola G, Tsukada S, Schroeder BE, Shaked GM, Wang L, Blesch A, Kim A, Conner JM, Rockenstein E, Chao MV, Koo EH, Geschwind D, Masliah E, Chiba AA, Tuszynski MH. Nat Med. 2009;15:331–7.PubMedCrossRefGoogle Scholar
  29. Nakagawa T, Tsuchida A, Itakura Y, Nonomura T, Ono M, Hirota F, Inoue T, Nakayama C, Taiji M, Noguchi H. Diabetes. 2000;49:436–44.PubMedCrossRefGoogle Scholar
  30. Nakakura T, Suzuki M, Watanabe Y, Tanaka S. Zool Sci. 2007;24:1086–93.PubMedCrossRefGoogle Scholar
  31. Pencea V, Bingaman K, Wiegand SJ, Luskin MB. J Neurosci. 2001;21:6706–17.PubMedGoogle Scholar
  32. Rage F, Givalois L, Marmigère F, Tapia-Arancibia L, Arancibia S. Neuroscience. 2002;112:309–18.PubMedCrossRefGoogle Scholar
  33. Ribasés M, Gratacòs M, Armengol L, de Cid R, Badía A, Jiménez L, Solano R, Vallejo J, Fernández F, Estivill X. Mol Psychiatry. 2003;8:745–51.PubMedCrossRefGoogle Scholar
  34. Rios M, Fan G, Fekete C, Kelly J, Bates B, Kuehn R, Lechan RM, Jaenisch R. Mol Endocrinol. 2001;15:1748–57.PubMedCrossRefGoogle Scholar
  35. Robinson LL, Townsend J, Anderson RA. J Clin Endocrinol Metab. 2009;88:3943–51.CrossRefGoogle Scholar
  36. Schrott LM, Franklin LM, Serrano PA. Brain Res. 2008;1198:132–40.PubMedCrossRefGoogle Scholar
  37. Silhol M, Bonnichon V, Rage F, Tapia-Arancibia L. Neuroscience. 2005;132:613–24.PubMedCrossRefGoogle Scholar
  38. Sugiyama N, Kanba S, Arita J. Brain Res Mol Brain Res. 2003;115:69–77.PubMedCrossRefGoogle Scholar
  39. Tapia-Arancibia L, Rage F, Givalois L, Arancibia S. Front Neuroendocrinol. 2004;5:77–107.CrossRefGoogle Scholar
  40. Tran PV, Carlson ES, Fretham SJ, Georgieff MK. J Nutr. 2008;138:2495–501.PubMedCrossRefGoogle Scholar
  41. Unger TJ, Calderon GA, Bradley LC, Sena-Esteves M, Rios M. J Neurosci. 2007;27:14265–74.PubMedCrossRefGoogle Scholar
  42. Van den Hove DL, Steinbusch HW, Scheepens A, Van de Berg WD, Kooiman LA, Boosten BJ, Prickaerts J, Blanco CE. Neuroscience. 2006;137:145–55.PubMedCrossRefGoogle Scholar
  43. Vickers MH, Breier BH, Cutfield WS, Hofman PL, Gluckman PD. Am J Physiol Endocrinol Metab. 2000;279:E83-7.PubMedGoogle Scholar
  44. Wang L, Xu RJ. Asia Pac J Clin Nutr. 2007;16:467–72.Google Scholar
  45. Yamamoto M, Sobue G, Yamamoto K, Terao S, Mitsuma T. Neurochem Res. 1996;21:929–38.PubMedCrossRefGoogle Scholar
  46. Yamanaka M, Tsuchida A, Nakagawa T, Nonomura T, Ono-Kishino M, Sugaru E, Noguchi H, Taiji M. Diabetes Obes Metab. 2007a;9:59–64.PubMedCrossRefGoogle Scholar
  47. Yamanaka M, Itakura Y, Tsuchida A, Nakagawa T, Noguchi H, Taiji M. Diabetes Obes Metab. 2007b;9:879–88.PubMedCrossRefGoogle Scholar
  48. Yeo GS, Connie Hung CC, Rochford J, Keogh J, Gray J, Sivaramakrishnan S, O’Rahilly S, Farooqi IS. Nat Neurosci. 2004;7:1187–9.PubMedCrossRefGoogle Scholar
  49. Zuena AR, Mairesse J, Casolini P, Cinque C, Alema GS, Morley-Fletcher S, Chiodi V, Spagnoli LG, Gradini R, Catalani A, Nicoletti F, Maccari S. PLoS ONE. 2008;3:e2170.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Didier Vieau
    • 1
  • Sylvain Mayeur
  • Marie-Amélie Lukaszewski
  • Fabien Delahave
  • Isabelle Dutriez-Casteloot
  • Christine Laborie
  • Sylvie Deloof
  • Jean Lesage
  • Christophe Breton
  1. 1.Environment Périnatal et Croissance (EA4489), Equipe Dénutritions Maternelles PérinatalesUniversité des Sciences et Technologies de LilleVilleneuve d’AscqFrance

Personalised recommendations