Advertisement

Dietary n-3-Polyunsaturated Fatty Acid Deprivation and Cytokine Signaling Pathways in the Brain

  • Sophie Laye
  • Virginie F. Labrousse
  • Veronique De Smedt-Peyrusse
Chapter

Abstract

The innate immune system of the brain is principally composed of microglial cells and astrocytes, which, once activated, protect neurons against insults (infectious agents, lesions, etc.). Activated glial cells produce inflammatory cytokines that act specifically through receptors expressed by the brain, leading to the development of behavioral disorders including depressive behavior and cognitive alterations. These behavioral alterations cease along with the synthesis of brain cytokines. When the level of expression of these cytokines remains high, they become toxic to neurons and can lead to their death, as in the case of neurodegenerative disorders like Alzheimer’s disease. Omega3 (ω3) type polyunsaturated fatty acids (PUFAs) are essential nutrients and essential components of neuronal and glial cell membranes. Additionally, they have powerful immunomodulatory properties and regulate the cytokines and their signaling pathways. They accumulate in the brain during the perinatal period in a dietary supply-dependant fashion. Their brain levels diminish with age, but can be corrected by a diet enriched in ω3 PUFAs. The increasing exposure of the population to “fast-food” type diets, extremely unbalanced in ω3 PUFAs, could contribute to the fragilization of the brain with respect to cytokines.

Keywords

Arachidonic Acid Inflammatory Cytokine Microglial Cell Lipid Raft Dietary Supply 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

15d-PGJ2

15-deoxy-delta 12,14-prostaglandin J2

AA

Arachidonic acid

ALA

Alpha linolenic acid

BBB

Blood brain barrier

CNS

Central nervous system

COX

Cyclooxygenase

cPLA2

Calcium-dependent phospholipase A2

DHA

Docosahexaenoic acid

DPA

Docosapentaenoic acid

EPA

Eicosapentaenoic acid

ERK

Extracellular signal-regulated protein kinase

GFAP

Glial fibrillary acidic protein

HEPE

Hydroxyeicosapentaenoic acid

IKK

IκB kinase

IL-1

Interleukin 1

IL-10

Interleukin 10

IL-1R

Interleukin 1 receptor

IL-1ra

Interleukin 1 receptor antagonist

IL-1RAcP

Interleukin 1 receptor accessory protein

IL-6

Interleukin 6

IL-6R

Interleukin 6 receptor

iPLA2

Calcium-independent phospholipase A2

IRAK

Interleukin-1 receptor associated kinase

IκB

Inhibitor of κB

JAK

Janus kinase

JNK

c-Jun N-terminal kinase

LA

Linoleic acid

LOX

Lipoxygenase

LPS

Lipopolysaccharide

LT

Leukotriene

LTP

Long-term potentiation

LXA4

Lipoxin A4

LXR

Liver X receptor

MAPK

Mitogen associated protein (MAP) kinase

MHCII

Class II major histocompatibility complex

MK

MAPK-activated protein kinase

MyD88

Myeloid differentiation primary response gene (88)

NEMO

NFκB essential modulator

NFκB

Nuclear factor kappa B

NIK

NFκB inducing kinase

PAMP

Pathogen-associated molecular patterns

PC

Phosphatidylcholine

PE

Phosphatidylethanolamine

PG

Prostaglandin

PGE2

Prostaglandin E2

PGI

Prostacyclin

PPAR

Peroxisome proliferator-activated receptor

PUFA

Polyunsaturated fatty acid

RXR

Retinoid X receptor

SAMP8

Senescence-accelerated prone mouse

STAT

Signal transducers and activators of transcription

TACE

TNFα cleavage enzyme

TLR4

Toll-like receptor 4

TNFR

Tumor necrosis factor receptor

TNFα

Tumor necrosis factor alpha

TRADD

TNFR1-associated via death domain

TRAF-6

TNF receptor associated factor 6

TX

Thromboxane

Tyk

Tyrosine kinase 2

Notes

Acknowledgment

Supported by INRA, CNRS, University of Bordeaux 2, the region Aquitaine and ANR grant ALIA.

References

  1. Bas O, Songur A, Sahin O, Mollaoglu H, Ozen OA, Yaman M, Eser O, Fidan H, Yagmurca M. Neurochem Int. 2007;50:548–54.PubMedCrossRefGoogle Scholar
  2. Bourre JM, Piciotti M. Neurosci Lett. 1992;141:65–8.PubMedCrossRefGoogle Scholar
  3. Calder PC. Am J Clin Nutr. 2006;83:1505S–19S.PubMedGoogle Scholar
  4. Calder PC. Biochimie. 2009;91:791–5.PubMedCrossRefGoogle Scholar
  5. Calon F, Cole G. Prostaglandins Leukot Essent Fatty Acids. 2007;77:287–93.PubMedCrossRefGoogle Scholar
  6. Chapkin RS, McMurray DN, Davidson LA, Patil BS, Fan YY, Lupton JR. Br J Nutr. 2008;100:1152–7.PubMedCrossRefGoogle Scholar
  7. Chavali SR, Zhong WW, Forse RA. Prostaglandins Leukot Essent Fatty Acids. 1998;58:185–91.PubMedCrossRefGoogle Scholar
  8. De Smedt-Peyrusse V, Sargueil F, Moranis A, Harizi H, Mongrand S, Layé S. J Neurochem. 2008;105:296–307.PubMedCrossRefGoogle Scholar
  9. Dyerberg J, Bang HO. Lancet. 1979;2:433–5.PubMedCrossRefGoogle Scholar
  10. Dziennis S, Alkayed NJ. Rev Neurosci. 2008;19:341–61.PubMedCrossRefGoogle Scholar
  11. Ericsson A, Liu C, Hart RP, Sawchenko PE. J Comp Neurol. 1995;361:681–98.PubMedCrossRefGoogle Scholar
  12. Favrelière S, Perault MC, Huguet F, De Javel D, Bertrand N, Piriou A, Durand G. Neurobiol. Aging. 2003;24:233–43.PubMedCrossRefGoogle Scholar
  13. Ferrucci L, Cherubini A, Bandinelli S, Bartali B, Corsi A, Lauretani F, Martin A, Andres-Lacueva C, Senin U, Guralnik JM. J Clin Endocrinol Metab. 2006;91:439–46.PubMedCrossRefGoogle Scholar
  14. Gautron L, Lafon P, Chaigniau M, Tramu G, Layé S. Neuroscience. 2002;112:717–29.PubMedCrossRefGoogle Scholar
  15. Godbout JP, Chen J, Abraham J, Richwine AF, Berg BM, Kelley KW, Johnson RW. FASEB J. 2005;19:1329–31.PubMedGoogle Scholar
  16. Griffin R, Nally R, Nolan Y, McCartney Y, Linden J, Lynch MA. J Neurochem. 2006;99:1263–72.PubMedCrossRefGoogle Scholar
  17. Harré EM, Roth J, Pehl U, Kueth M, Gerstberger R, Hübschle T. J Appl Physiol. 2002;92:2657–66.PubMedGoogle Scholar
  18. Jones SA, Richards PJ, Scheller J, Rose-John S. J Interferon Cytokine Res. 2005;25:241–53.PubMedCrossRefGoogle Scholar
  19. Kaur P, Heggland I, Aschner M, Syversen T. Neurotoxicology. 2008;29:978–87.PubMedCrossRefGoogle Scholar
  20. Kavanagh T, Lonergan PE, Lynch MA. Prostaglandins Leukot Essent Fatty Acids. 2004;70:391–7.PubMedCrossRefGoogle Scholar
  21. Kiecolt-Glaser JK, Belury MA, Porter K, Beversdorf DQ, Lemeshow S, Glaser R. Psychosom Med. 2007;69:217–24.PubMedCrossRefGoogle Scholar
  22. Konsman JP, Vigues S, Mackerlova L, Bristow A, Blomqvist A. J Comp Neurol. 2004;472:113–29.PubMedCrossRefGoogle Scholar
  23. Legler DF, Micheau O, Doucey MA, Tschopp J, Bron C. Immunity. 2003;18:655–64.PubMedCrossRefGoogle Scholar
  24. Liu ZG. Cell Res. 2005;15:24–7.PubMedCrossRefGoogle Scholar
  25. Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K, Serhan CN, Bazan NG. J Clin Invest. 2005;115:2774–83.PubMedCrossRefGoogle Scholar
  26. Lynch AM, Loane DJ, Minogue AM, Clarke RM, Kilroy D, Nally RE, Roche OJ, O’Connell F, Lynch MA. Neurobiol Aging. 2007;28 (6):845–55.PubMedCrossRefGoogle Scholar
  27. Lynch AM, Lynch MA. Eur J Neurosci. 2002;15:1779–88.PubMedCrossRefGoogle Scholar
  28. McCoy MK, Tansey MG. J Neuroinflammation. 2008;5:45.PubMedCrossRefGoogle Scholar
  29. McGahon BM, Martin DS, Horrobin DF, Lynch MA. Neuroscience. 1999a;94:305–14.PubMedCrossRefGoogle Scholar
  30. McGahon BM, Murray CA, Horrobin DF, Lynch MA. Neurobiol Aging. 1999b;20:643–53.PubMedCrossRefGoogle Scholar
  31. Meydani SN, Endres S, Woods MM, Goldin BR, Soo C, Morill-Labrode A, Dinarello CA, Gorbach SL. J Nutrition. 1991;121:547-555.PubMedCrossRefGoogle Scholar
  32. Michaeli B, Berger MM, Revelly JP, Tappy L, Chiolero R. Clinical nutrition (Edinburgh, Scotland) 2007;26:70-77.PubMedCrossRefGoogle Scholar
  33. Miguelez M, Anisman H, Weber JM, Merali Z. J Neuroimmunol. 2006;181:19–28.PubMedCrossRefGoogle Scholar
  34. Mingam R, Moranis A, Bluthé RM, De Smedt-Peyrusse V, Kelley KW, Guesnet P, Lavialle M, Dantzer R, Layé S. Eur J Neurosci. 2008;28:1877–86.PubMedCrossRefGoogle Scholar
  35. Minogue AM, Lynch AM, Loane DJ, Herron CE, Lynch MA. J Neurochem. 2007;103:914–26.PubMedCrossRefGoogle Scholar
  36. Nadjar A, Combe C, Layé S, Tridon V, Dantzer R, Amédée T, Parnet P. J Neurochem. 2003;87:1024–36.PubMedCrossRefGoogle Scholar
  37. Pertusa M, García-Matas S, Rodríguez-Farré E, Sanfeliu C, Cristòfol R. J Neurochem. 2007;101:794–805.PubMedCrossRefGoogle Scholar
  38. Petursdottir AL, Farr SA, Morley JE, Banks WA, Skuladottir GV. Neurobiol Aging. 2007;28:1170–8.PubMedCrossRefGoogle Scholar
  39. Pluess TT, Hayoz D, Berger MM, Tappy L, Revelly JP, Michaeli B, Carpentier YA, Chioléro RL. Intensive Care Med. 2007;33:789–97.PubMedCrossRefGoogle Scholar
  40. Rapoport SI, Rao JS, Igarashi M. Prostaglandins Leukot Essent Fatty Acids. 2007;776:251–61.CrossRefGoogle Scholar
  41. Rees D, Miles EA, Banerjee T, Wells SJ, Roynette CE, Wahle KW, Calder PC. Am J Clin Nutr. 2006;83:331–42.PubMedGoogle Scholar
  42. Rothwell NJ, Luheshi GN. Trends Neurosci. 2000;23:618–25.PubMedCrossRefGoogle Scholar
  43. Scher JU, Pillinger MH. Clin Immunol. 2005;114:100–9.PubMedCrossRefGoogle Scholar
  44. Sehgal PB, Guo GG, Shah M, Kumar V, Patel K. J Biol Chem. 2002;277:12067–74.PubMedCrossRefGoogle Scholar
  45. Serhan CN. Prostaglandins Leukot Essent Fatty Acids. 2008;79:157–63.PubMedCrossRefGoogle Scholar
  46. Simopoulos AP. World Rev Nutr Diet. 2009;99:1–16.PubMedCrossRefGoogle Scholar
  47. Song C, Horrobin D. J Lipid Res. 2004;45:1112–21.PubMedCrossRefGoogle Scholar
  48. Tancredi V, D’Antuono M, Cafè C, Giovedì S, Buè MC, D’Arcangelo G, Onofri F, Benfenati F. J Neurochem. 2000;75:634–43.PubMedCrossRefGoogle Scholar
  49. Triantafilou M, Miyake K, Golenbock DT, Triantafilou K. J Cell Sci. 2002;115:2603–11.PubMedGoogle Scholar
  50. Ye SM, Johnson RW. J Neuroimmunol. 2001;117:87–96.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sophie Laye
    • 1
  • Virginie F. Labrousse
  • Veronique De Smedt-Peyrusse
  1. 1.Psychoneuroimmunology, nutrition and genetics (Psynugen)Université Bordeaux 2, INRA, UMR1286, CNRS, UMR5226, Bâtiment UFR Pharmacie – 2ème Tranche – 2ème Etage, Case courrier 34BORDEAUX, CedexFrance

Personalised recommendations