Overnutrition in Mothers and Appetite Regulators in Offspring



Overconsumption of energy-rich food and a sedentary lifestyle make significant contributions to the development of obesity. Over the past several decades, the proportion of people who are overweight or obese has risen sharply. As obesity becomes a global epidemic, the rate of childhood obesity is also increasing. Epidemiological and experimental evidence suggests that programming of obesity may occur following overnutrition during early development. Indeed, intrauterine factors such as abnormal glucose and lipid levels, along with hormonal changes due to maternal obesity may also be important determinants of subsequent obesity risk, even more so than genetic factors, thus contributing to the increased incidence of obesity in children. This highlights the importance of understanding the underlying mechanisms to enable better prevention and to permit development of therapeutic strategies. Over the past 5 years, the focus of research on programming of brain appetite regulation has moved from studying the impact of maternal undernutrition to that of overnutrition, as more and more women around the world enter pregnancy either overweight or obese. The appetite circuits that regulate feeding are highly conserved across mammalian species. Animal models provide an opportunity to investigate the impact of in utero or early postnatal overnutrition while controlling genetic and environmental influences. Rat offspring from mothers rendered obese by access to ‘junk food’ are more likely to overeat and prefer ‘junk food’. They tend to develop very early (weaning age) onset lipid and glucose metabolic disorders, such as hyperlipidemia and glucose intolerance, and these last into adulthood. These offspring also manifest resistance to the anorexigenic effects of leptin. Studies in different species suggest that maternal obesity or consuming a lipid dense diet alter the key hypothalamic neuropeptides controlling food intake and energy homeostasis in offspring in utero, with aberrant neural development continuing after birth. On balance, offspring from obese mothers appear to have more hypothalamic orexigenic neuropeptides and heightened responses to fasting, compared with offspring from lean mothers. Furthermore, short-term overfeeding early in life can significantly contribute to an obese phenotype in individuals. This chapter reviews recent work investigating the impact of maternal obesity and early postnatal overfeeding on hypothalamic appetite circuits and appetite control.


Maternal Obesity Junk Food Obese Phenotype Suckling Period Obese Mother 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Agouti-related protein


Arcuate nucleus


Cocaine- and amphetamine-regulated transcript


Gestational day


High fat diet


Melanocortin 3/4 receptor


Melanocyte-stimulating hormone


Mammalian target of rapamycin


Neuropeptide Y


Long form of the leptin receptor


Postnatal day




Paraventricular nucleus of the hypothalamus


Suppressor of cytokine signalling


Signal transducer and activator of transcription



Work in the Morris laboratory is supported by the National Health and Medical Research Council of Australia and Diabetes Australia.


  1. Ahima RS, Prabakaran D, Flier JS. J Clin Invest. 1998;101:1020–7.PubMedCrossRefGoogle Scholar
  2. Armitage JA, Lakasing L, Taylor PD, Balachandran AA, Jensen RI, Dekou V, Ashton N, Nyengaard JR, Poston L. J Physiol. 2005;565:171–84.PubMedCrossRefGoogle Scholar
  3. Barker DJ. BMJ. 1990;301:1111.PubMedCrossRefGoogle Scholar
  4. Bassett DR, Craig BW. J Appl Physiol. 1988;64:1249–56.PubMedCrossRefGoogle Scholar
  5. Bayol SA, Farrington SJ, Stickland NC. Br J Nutr. 2007;98:843–51.PubMedCrossRefGoogle Scholar
  6. Bayol SA, Simbi BH, Bertrand JA, Stickland NC. J Physiol. 2008;586:3219–30.PubMedCrossRefGoogle Scholar
  7. Boney CM, Verma A, Tucker R, Vohr BR. Pediatrics. 2005;115:e290–6.PubMedCrossRefGoogle Scholar
  8. Bouret SG, Draper SJ, Simerly RB. Science. 2004;304:108–10.PubMedCrossRefGoogle Scholar
  9. Bouret SG, Simerly RB. Clin Genet. 2006;70:295–301.PubMedCrossRefGoogle Scholar
  10. Bouret SG, Gorski JN, Patterson CM, Chen S, Levin BE, Simerly RB. Cell Metab. 2008;7:179–85.PubMedCrossRefGoogle Scholar
  11. Chang GQ, Gaysinskaya V, Karatayev O, Leibowitz SF. J Neurosci. 2008;28:12107–19.PubMedCrossRefGoogle Scholar
  12. Chen H, Simar D, Lambert K, Mercier J, Morris MJ. Endocrinology. 2008;149:5348–56.PubMedCrossRefGoogle Scholar
  13. Chen H, Morris MJ. Obesity. 2009;17:1356–62.PubMedGoogle Scholar
  14. Chen H, Simar D, Morris MJ. PLoS ONE. 2009;4:e6259. doi:6210.1371/journal.pone.0006259.Google Scholar
  15. Curhan GC, Chertow GM, Willett WC, Spiegelman D, Colditz GA, Manson JE, Speizer FE, Stampfer MJ. Circulation. 1996;94:1310–5.PubMedGoogle Scholar
  16. Elahi MM, Cagampang FR, Mukhtar D, Anthony FW, Ohri SK, Hanson MA. Br J Nutr. 2009;102:514–9.Google Scholar
  17. Elmquist JK, Coppari R, Balthasar N, Ichinose M, Lowell BB. J Comp Neurol. 2005;493:63–71.PubMedCrossRefGoogle Scholar
  18. Fall CH, Osmond C, Barker DJ, Clark PM, Hales CN, Stirling Y, Meade TW. BMJ. 1995;310:428–32.PubMedCrossRefGoogle Scholar
  19. Ferezou-Viala J, Roy A-f, Serougne C, Gripois D, Parquet M, Bailleux V, Gertler A, Delplanque B, Djiane J, Riottot M, Taouis M. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1056–62.PubMedCrossRefGoogle Scholar
  20. Franke K, Harder T, Aerts L, Melchior K, Fahrenkrog S, Rodekamp E, Ziska T, Van Assche FA, Dudenhausen JW, Plagemann A. Brain Res. 2005;1031:276–83.PubMedCrossRefGoogle Scholar
  21. Gorski JN, Dunn-Meynell AA, Hartman TG, Levin BE. Am J Physiol Regul Integr Comp Physiol. 2006;291:R768–78.PubMedCrossRefGoogle Scholar
  22. Gorski JN, Dunn-Meynell AA, Levin BE. Am J Physiol Regul Integr Comp Physiol. 2007;292:R1782–91.PubMedCrossRefGoogle Scholar
  23. Grayson BE, Allen SE, Billes SK, Williams SM, Smith MS, Grove KL. Neuroscience. 2006;143:975–86.PubMedCrossRefGoogle Scholar
  24. Grove KL, Allen S, Grayson BE, Smith MS. Neuroscience. 2003;116:393–406.PubMedCrossRefGoogle Scholar
  25. Grove KL, Smith MS. Physiol Behav. 2003;79:47–63.PubMedCrossRefGoogle Scholar
  26. Grove KL, Grayson BE, Glavas MM, Xiao XQ, Smith MS. Physiol Behav. 2005;86:646–60.PubMedCrossRefGoogle Scholar
  27. Gupta A, Srinivasan M, Thamadilok S, Patel MS. J Endocrinol. 2009;200:293–300.PubMedCrossRefGoogle Scholar
  28. Heinsbroek AC, van Dijk G. Int J Obes. 2009;33:104–14.CrossRefGoogle Scholar
  29. Howie GJ, Sloboda DM, Kamal T, Vickers MH. J Physiol. 2009;587:905–15.PubMedCrossRefGoogle Scholar
  30. Kirk SL, Samuelsson AM, Argenton M, Dhonye H, Kalamatianos T, Poston L, Taylor PD, Coen CW. PLoS ONE. 2009;4:e5870.PubMedCrossRefGoogle Scholar
  31. Kozak R, Burlet A, Burlet C, Beck B. Brain Res Dev Brain Res. 2000;125:75–82.PubMedCrossRefGoogle Scholar
  32. Levin BE, Dunn-Meynell AA, Banks WA. Am J Physiol Regul Integr Comp Physiol. 2004;286:R143–50.PubMedCrossRefGoogle Scholar
  33. Lopez M, Seoane LM, Tovar S, Garcia MC, Nogueiras R, Dieguez C, Senaris RM. Diabetologia. 2005;48:140–8.PubMedCrossRefGoogle Scholar
  34. Lucas A. J Nutr. 1998;128:401S–6S.PubMedGoogle Scholar
  35. McCurdy CE, Bishop JM, Williams SM, Grayson BE, Smith MS, Friedman JE, Grove KL. J Clin Invest. 2009. doi:10.1172/JCI32661.Google Scholar
  36. Mistry AM, Swick A, Romsos DR. Am J Physiol Regul Integr Comp Physiol. 1999;277:R742–7.Google Scholar
  37. Morris MJ, Chen H. Int J Obes. 2009;33:115–22.CrossRefGoogle Scholar
  38. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Nature. 2006;443:289–95.PubMedCrossRefGoogle Scholar
  39. Nielson MC, Gordon-Larsen P, North KE, Adair LS. Obesity. 2006;14:701–9.CrossRefGoogle Scholar
  40. Nivoit P, Morens C, Van Assche FA, Jansen E, Poston L, Remacle C, Reusens B. Diabetologia. 2009;52:1133–42.PubMedCrossRefGoogle Scholar
  41. Painter RC, Roseboom TJ, Bleker OP. Reprod Toxicol. 2005;20:345–52.PubMedCrossRefGoogle Scholar
  42. Palou A, Pico C. Appetite. 2009;52:249–52.PubMedCrossRefGoogle Scholar
  43. Pico C, Oliver P, Sanchez J, Miralles O, Caimari A, Priego T, Palou A. Int J Obes. 2007;31:1199–209.CrossRefGoogle Scholar
  44. Pinto S, Roseberry AG, Liu H, Diano S, Shanabrough M, Cai X, Friedman JM, Horvath TL. Science. 2004;304:110–5.PubMedCrossRefGoogle Scholar
  45. Plagemann A, Heidrich I, Gotz F, Rohde W, Dorner G. Exp Clin Endocrinol. 1992;99:154–8.PubMedCrossRefGoogle Scholar
  46. Plagemann A, Harder T, Rake A, Voits M, Fink H, Rohde W, Dorner G. Brain Res. 1999a;836:146–55.PubMedCrossRefGoogle Scholar
  47. Plagemann A, Harder T, Rake A, Waas T, Melchior K, Ziska T, Rohde W, Dorner G. J Neuroendocrinol. 1999b;11:541–6.PubMedGoogle Scholar
  48. Samuelsson A-M, Matthews PA, Argenton M, Christie MR, McConnell JM, Jansen EHJM, Piersma AH, Ozanne SE, Twinn DF, Remacle C, Rowlerson A, Poston L, Taylor PD. Hypertension. 2007;51:383–92.PubMedCrossRefGoogle Scholar
  49. Sanchez J, Priego T, Palou M, Tobaruela A, Palou A, Pico C. Endocrinology. 2008;149:733–40.PubMedCrossRefGoogle Scholar
  50. Schmidt I, Fritz A, Scholch C, Schneider D, Simon E, Plagemann A. Int J Obes Relat Metab Disord. 2001;25:1168–74.PubMedCrossRefGoogle Scholar
  51. Shintani M, Ogawa Y, Ebihara K, Aizawa-Abe M, Miyanaga F, Takaya K, Hayashi T, Inoue G, Hosoda K, Kojima M, Kangawa K, Nakao K. Diabetes. 2001;50:227–32.PubMedCrossRefGoogle Scholar
  52. Singer LK, Kuper J, Brogan RS, Smith MS, Grove KL. Neuroreport. 2000;11:1075–80.PubMedCrossRefGoogle Scholar
  53. Srinivasan M, Aalinkeel R, Song F, Mitrani P, Pandya JD, Strutt B, Hill DJ, Patel MS. Am J Physiol Endocrinol Metab. 2006;290:E129–34.PubMedCrossRefGoogle Scholar
  54. Tremblay J, Hamet P. Metab Clin Exp. 2008;57:S27–31.PubMedCrossRefGoogle Scholar
  55. Velkoska E, Cole TJ, Morris MJ. Am J Physiol Endocrinol Metab. 2005;288:E1236–43.PubMedCrossRefGoogle Scholar
  56. Vickers MH, Gluckman PD, Coveny AH, Hofman PL, Cutfield WS, Gertler A, Breier BH, Harris M. Endocrinology. 2005;146:4211–6.PubMedCrossRefGoogle Scholar
  57. Vickers MH, Gluckman PD, Coveny AH, Hofman PL, Cutfield WS, Gertler A, Breier BH, Harris M. Endocrinology. 2008;149:1906–13.PubMedCrossRefGoogle Scholar
  58. Voits M, Forster S, Rodel S, Voigt JP, Plagemann A, Fink H. Naunyn Schmiedebergs Arch Pharmacol. 1996;354:374–8.PubMedCrossRefGoogle Scholar
  59. White CL, Purpera MN, Morrison CD. Am J Physiol Regul Integr Comp Physiol. 2009;296:R1464–72.PubMedCrossRefGoogle Scholar
  60. WHO. 2006. Obesity and overweight. September 2006. Available from: http://www.who.int/mediacentre/factsheets/fs311/en/index.html.
  61. Yura S, Itoh H, Sagawa N, Yamamoto H, Masuzaki H, Nakao K, Kawamura M, Takemura M, Kakui K, Ogawa Y, Fujii S. Cell Metab. 2005;1:371–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Pharmacology, School of Medical SciencesUniversity of New South WalesSydneyAustralia

Personalised recommendations