Diet and Brain Evolution: Nutritional Implications of Large Human Brain Size

  • William R. Leonard
  • J. Josh Snodgrass
  • Marcia L. Robertson


The evolution of large human brain size has had important implications for the nutritional biology of our species. Relative to other primates and other mammals, humans spend much larger share of their resting energy budget on brain metabolism. The high energy costs of our brains are supported by the consumption of diets that are high in quality, that is, relatively rich in energy and fat. Among living primates, relative brain size is positively correlated with dietary quality. Humans fall at the positive extreme for both parameters, having the largest relative brain size and the highest quality diet. High levels of encephalization in humans also have important implications for early childhood growth and development. Human infants have much higher levels of body fatness than those of other mammals. These greater levels of adiposity provide a supply of stored energy to accommodate the high metabolic demands of rapid brain growth. Under conditions of nutritional stress, human infants preserve body fat for brain metabolism by reducing rates of linear growth and decreasing levels of fat oxidation. The human fossil record indicates that major changes in both brain size and diet quality occurred in association with the emergence of the genus Homo between 2.0 and 1.7 million years ago in Africa. With the evolution of Homo erectus at 1.8 million years ago, we find evidence of an important adaptive shift – major increases in brain size and body size, along with the emergence of the first hunting and gathering economy. While dietary change was not the prime force responsible for the evolution of large human brain size, improvements in dietary quality and increased consumption of dietary fat appear to have been a necessary condition for promoting encephalization in the human lineage. Further research is needed to better understand the nature of the dietary changes that took place with emergence of early human ancestors.


Dietary Quality Brain Size Rest Metabolic Rate Human Infant Brain Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Arachidonic acid


Docosahexaenoic acid


Dietary quality


Insulin-like growth factor I


Long-chain polyunsaturated fatty acid


Million years ago


Resting metabolic rate


Respiratory quotient


  1. Aiello LC, Wheeler P. Curr Anthropol. 1995;36:199–221.CrossRefGoogle Scholar
  2. Antón SC, Leonard WR, Robertson ML. J Hum Evol. 2002;43:773–85.PubMedCrossRefGoogle Scholar
  3. Asfaw B, Beyene Y, Suwa G, Walter RC, White TD, WoldeGabriel G, et al. Nature. 1992;360:732–5.PubMedCrossRefGoogle Scholar
  4. Behrensmeyer K, Todd NE, Potts R, McBrinn GE. Science. 1997;278:1589–94.PubMedCrossRefGoogle Scholar
  5. Bellomo RV. J Hum Evol. 1994;27:173–95.CrossRefGoogle Scholar
  6. Bobe R, Behrensmeyer AK. J Hum Evol. 2002;42:475–97.PubMedCrossRefGoogle Scholar
  7. Briefel RR, Johnson CL. Annu Rev Nutr. 2004;24:401–31.PubMedCrossRefGoogle Scholar
  8. Bunn HT. In: Ungar PS, editor. Evolution of the human diet: the known, the unknown, and the unknowable. New York: Oxford University Press; 2006. p. 191–211.Google Scholar
  9. Cordain L, Brand-Miller J, Eaton SB, Mann N, Holt SHA, Speth JD. Am J Clin Nutr. 2000;71:682–92.Google Scholar
  10. Cordain L, Watkins BA, Mann NJ. World Rev Nutr Diet. 2001;90:144–61.PubMedCrossRefGoogle Scholar
  11. Cordain L, Eaton SB, Sebastian A, Mann N, Lindberg S, Watkins BA, et al. Am J Clin Nutr. 2005;81:341–54.PubMedGoogle Scholar
  12. Crawford MA. Nutr Rev. 1992;50:3–11.PubMedCrossRefGoogle Scholar
  13. Crawford MA, Bloom M, Broadhurst CL, Schmidt WF, Cunnane SC, Galli C, et al. Lipids. 1999;34:S39–47.PubMedCrossRefGoogle Scholar
  14. Dewey KG, Heinig MJ, Nommsen LA, Peerson JM, Lonnerdal B. Am J Clin Nutr. 1993;52:140–5.Google Scholar
  15. Englyst KN, Englyst HN. Br J Nutr. 2005;94:1–11.PubMedCrossRefGoogle Scholar
  16. Foster Z, Byron E, Reyes-García V, Huanca T, Vadez V, Apaza L, et al. Am J Phys Anthropol. 2005;126:343–51.PubMedCrossRefGoogle Scholar
  17. Frisancho AR. Am J Hum Biol. 2003;15:35–52.Google Scholar
  18. García-Alonso A, Goñi I. Nahrung. 2000;44:19–22.PubMedCrossRefGoogle Scholar
  19. Harris JWK, Capaldo S. In: Berthelet A, Chavaillon J, editors. The use of tools by human and nonhuman primates. Oxford: Oxford Science; 1993. p. 196–220.Google Scholar
  20. Hoffman DJ, Sawaya AL, Verreschi I, Tucker KL, Roberts SB. Am J Clin Nutr. 2000;72:702–7.PubMedGoogle Scholar
  21. Holliday MA. In: Falkner F, Tanner JM, editors. Human growth: a comprehensive treatise, vol. 2. 2nd ed. New York: Plenum; 1986. p. 101–17.Google Scholar
  22. Hussain MA, Schmintz O, Mengel, Glatz Y, Christiansen JS, Zapf J, et al. J Clin Invest. 1994;94:1126–33.PubMedCrossRefGoogle Scholar
  23. Kety SS. In: Richter D, editor. Metabolism of the central nervous system. New York: Pergammon; 1957. p. 221–37.Google Scholar
  24. Kuzawa CW. Yrbk Phys Anthropol. 1998;41:177–209.CrossRefGoogle Scholar
  25. Leonard WR. Sci Am. 2002;287(6):106–15.PubMedCrossRefGoogle Scholar
  26. Leonard WR, Robertson ML. Am J Hum Biol. 1992;4:179–95.CrossRefGoogle Scholar
  27. Leonard WR, Robertson ML. Am J Hum Biol. 1994;6:77–88.CrossRefGoogle Scholar
  28. Leonard WR, Robertson ML, Snodgrass JJ, Kuzawa CW. Biochem Physiol Part A. 2003;135:5–15.CrossRefGoogle Scholar
  29. Martin RD. Primate origins and evolution: a phylogenetic reconstruction. Princeton, NJ: Princeton University Press; 1989.Google Scholar
  30. Martorell R, Habicht J-P. In: Falkner F, Tanner JM, editors. Human growth: a comprehensive treatise, vol. 3. 2nd ed. New York: Plenum; 1986. p. 241–62.Google Scholar
  31. McHenry HM, Coffing K. Ann Rev Anthropol. 2000;29:125–46.CrossRefGoogle Scholar
  32. Pennisi E. Science. 1999;283:2004–5.PubMedCrossRefGoogle Scholar
  33. Plummer T. Yrbk Phys Anthrpol. 2004;47:118–64.CrossRefGoogle Scholar
  34. Popovich DG, Jenkins DJA, Kendall CWC, Dierenfeld ES, Carroll RW, Tariq N, et al. J Nutr. 1997;127:2000–5.PubMedGoogle Scholar
  35. Potts R. Yrbk Phys Anthropol. 1998;41:93–136.CrossRefGoogle Scholar
  36. Richard AF. Primates in nature. New York: WH Freeman; 1985.Google Scholar
  37. Rosenberg KR. Yrbk Phys Anthropol. 1992;35:89–124.CrossRefGoogle Scholar
  38. Ruff CB, Trinkaus E, Holliday TW. Nature. 1997;387:173–6.PubMedCrossRefGoogle Scholar
  39. Sailer LD, Gaulin SJC, Boster JS, Kurland JA. Primates. 1985;26:14–27.CrossRefGoogle Scholar
  40. Sawaya AL, Martins PA, Grillo LP, Florêncio TT. Nutr Rev. 2004;62:S127–33.PubMedCrossRefGoogle Scholar
  41. Schoeninger MJ, Bunn HT, Murray SS, Marlett JA. J Food Comp Anal. 2001;14:3–13.CrossRefGoogle Scholar
  42. Stanford CB. Am Anthropol. 1996;98:96–113.CrossRefGoogle Scholar
  43. Tutin CEG, Fernandez M. Am J Primatol. 1992;28:29–40.CrossRefGoogle Scholar
  44. Tutin CEG, Fernandez M. Am J Primatol. 1993;30:195–211.CrossRefGoogle Scholar
  45. Weiner S, Qunqu X, Goldberg P, Liu J, Bar-Yosef O. Science. 1998;281:251–3.PubMedCrossRefGoogle Scholar
  46. Wolpoff MH. Paleoanthropology. 2nd ed. Boston, MA: McGraw-Hill; 1999.Google Scholar
  47. Wrangham RW. Catching fire: how cooking made us human. New York: Basic Books; 2009.Google Scholar
  48. Wrangham RW, Jones JH, Laden G, Pilbeam D, Conklin-Brittain NL. Curr Anthropol. 1999;40:567–94.PubMedCrossRefGoogle Scholar
  49. Wynn JG. Am J Phys Anthropol. 2004;123:106–18.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • William R. Leonard
    • 1
  • J. Josh Snodgrass
  • Marcia L. Robertson
  1. 1.Department of AnthropologyNorthwestern UniversityEvanstonUSA

Personalised recommendations