Skip to main content

Amino Sugars

  • Chapter
  • First Online:
Carbohydrates

Abstract

Amino sugars are monosaccharides in which one or more hydroxyl groups of a sugar chain is replaced by an amino group. The amino group(s) can be free or derivatized (it is usually acylated, but it can be alkylated, too).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gottschalk, A., “Structural relationship between Sialic Acid, Neuraminic Acid and 2- Carboxy-Pyrrole”, Nature (1955) 176, 881–882

    Article  CAS  Google Scholar 

  2. Bolton, C. H.; Foster, A. B.; Stacey, M.; Webber, J. M., “Carbohydrate components of antibiotics. Part I. Degradation of desosamine by alkali: its absolute configuration at position 5”, J. Chem. Soc. (1961) 4831–4836

    Google Scholar 

  3. Bolton, C. H.; Foster, A. B.; Stacey, M.; Webber, J. M., “The configuration of desosamine”, Chem. Ind. (London) (1962) 1945–1946

    Google Scholar 

  4. Walters, D. R.; Dutcher, J. D.; Wintersteiner, O., “The structure of mycosamine”, J. Am. Chem. Soc. (1957) 79, 5076–5077

    Article  CAS  Google Scholar 

  5. Dutcher, J. D.; Walters, D. R.; Wintersteiner, O., “Nystatin. III. Mycosamine: Preparation and determination of structure”, J. Org. Chem. (1963) 28, 995–999

    Article  CAS  Google Scholar 

  6. von Saltza, M. H.; Reid, J.; Dutcher, J. D.; Wintersteiner, O., “Nystatin. II. The Stereochemistry of Mycosamine”, J. Am. Chem. Soc. (1961) 83, 2785–2785

    Google Scholar 

  7. von Saltza, M. H.; Dutcher, J. D.; Reid, J.; Wintersteiner, O., “Nystatin IV. The Stereochemistry of Mycosamine”, J. Org. Chem. (1963) 28, 999–1004

    Article  Google Scholar 

  8. Haskell, T. H.; Hanessian, S., “The configuration of paromose”, J. Org. Chem. (1963) 28, 2598–2604

    Article  CAS  Google Scholar 

  9. Strange, R. E., “The structure of an Amino Sugar present in Certain Spores and Bacterial cell walls”, Biochem. J. (1956) 64, 23P

    Google Scholar 

  10. Strange, R. E.; Kent, L. H., “The isolation, characterization and chemical synthesis of muramic acid”, Biochem. J. (1959), 71, 333–339

    CAS  Google Scholar 

  11. Fürst, A.; Plattner, P. A., Proc. Intern. Congr. Pure Appl. Chem., 12th, New York, p. 405

    Google Scholar 

  12. Overend, W. G.; Vaughan, G., “Sugar transformations-direction of ring opening of anhydrosugars”, Chem. Ind. (London) (1955) 995–1000

    Google Scholar 

  13. Newth, F. H., “Sugar epoxides”, Quart. Rev. (London) (1959) 13, 30–47

    Article  CAS  Google Scholar 

  14. Parker, R. E.; Isaacs, N. S., “Mechanisms of epoxide reaction”, Chem. Rev. (1959) 59, 737–799

    Article  CAS  Google Scholar 

  15. Huber, G.; Schier, O., “Zum Verständnis der Epoxydöffnung an Pyranose-Ringen”, Helv. Chim. Acta (1960) 43, 129–135

    Article  CAS  Google Scholar 

  16. Haworth, W. N.; Lake, W. H. G.; Peat, S., “The configuration of glucosamine (chitosamine)”, J. Chem. Soc. (1939) 271–274

    Google Scholar 

  17. Wiggins, L. F., “The conversion of galactose into derivatives of d-idose”, J. Chem. Soc. (1944) 522–526

    Google Scholar 

  18. Buchanan, J. G.; Miller, K. J., “The action of ammonia on methyl 2,3-anhydro-4,6-O- benzylidene- -d- guloside and -taloside”, J. Chem. Soc. (1960) 3392–3394

    Google Scholar 

  19. Jeanloz, R. W.; Tarasiejska-Glazer, Z.; Jeanloz, D. A., “2-Amino-2-deoxy -d- idose (D-Idosamine) and 2-Amino-2-deoxy -d- talose (D-Talosamine)”, J. Org. Chem. (1961) 26, 532–536

    Article  CAS  Google Scholar 

  20. Jarý, J.; Ćapek, K.; Kovář, J., “Synthesis of derivatives of 3,6-dideoxy-3-amino -l- idose”, Coll. Czech. Chem. Commun. (1963) 28, 2171–2181

    Google Scholar 

  21. Charalambous, G.; Percival, E., “Products from the alkaline and reductive fission of the epoxide ring of methyl 3 : 4- and 2 : 3-anhydro-6-deoxy- α -l- taloside and of their methylated derivatives”, J. Chem. Soc. (1954) 2443 – 2448

    Google Scholar 

  22. Stevens, C. L.; Gupta, S. K.; Glinski, R. P.; Taylor, K. G.; Blumbergs, P.; Schaffner, C. P.; Lee, C.-H., “Proof of structure, stereochemistry, and synthesis of perosamine (4-amino-4,6-dideoxy -d- mannose) derivatives”, Carbohydr. Res. (1968) 7, 502–504

    Article  CAS  Google Scholar 

  23. Stevens, C. L.; Glinski, R. P.; Taylor, K. G.; Blumbergs, P.; Gupta, S. K., “Synthesis and proof of structure of perosamine (4-amino-4,6-dideoxy -d- mannose) derivatives”, J. Am. Chem. Soc. (1970) 92, 3160–3168

    Article  CAS  Google Scholar 

  24. Kovàř, J.; Jarý, J., “Amino sugars. XV. Synthesis of derivatives of 3,6-diamino-3,6- dideoxy -l- talose”, Coll. Czech. Chem. Commun. (1968) 33, 549–555

    Google Scholar 

  25. Fischer, E.; Zach, K., “Neue Synthese von Basen der Zuckergruppe”, Chem. Ber. (1911) 44, 132–135

    Article  CAS  Google Scholar 

  26. Akiya, S.; Ossawa, T., “Nitrogen-containing sugars. III. Synthesis and deamination of 5-amino-5-deoxy-1,2-isopropylidene -d- xylofuranose”, Yakugaku Zasshi (1956) 76, 1280–1282

    CAS  Google Scholar 

  27. Helferich, B.; Burgdorf, M., “Ueber derivate der D-xylose”, Tetrahedron (1958) 3, 274–278

    Article  CAS  Google Scholar 

  28. Wolfrom, M. L; Shafizadeh, F.; Armstrong, R. K.; Shen Han, T. M., “Synthesis of Amino Sugars by reduction of Hydrazine Derivatives; D- and L-Ribosamine, D- Lyxosamine1-3”, J. Am. Chem. Soc. (1959) 81, 3716–3719

    Article  CAS  Google Scholar 

  29. Meyer zu Reckendorf, W., “Synthese der 2.6-Diamino-2.6-didesoxy -l- idose”, Angew. Chem. (1963) 75, 573–573

    Google Scholar 

  30. Meyer zu Reckendorf, W., “ Diaminozucker, II. Die Synthese der 2.6-Didesoxy- 2.6- diamino -d- galaktose”, Chem. Ber. (1963) 96, 2019–2023

    Article  Google Scholar 

  31. Freudenberg, K.; Burkhart, O.; Braun, E., “Zur Kenntnis der Aceton-Zucker, VIII.: Eine neue Amino-glucose”, Chem. Ber. (1926) 59, 714–720

    Google Scholar 

  32. Lemieux, R. U.; Chu, P., “1, -d- allose2: 5, 6-Di-O-isopropylidene 3-Deoxy-3-amino-”, J. Am. Chem. Soc. (1958) 80, 4745

    Article  CAS  Google Scholar 

  33. Freudenberg, K.; Brauns, F., “Zur Kenntnis der Aceton-Zucker, I.: Umwandlungen der Diaceton-glucose”, Chem. Ber. (1922) 55, 3233–3238

    Google Scholar 

  34. Nayak, U. G.; Whistler, R. L., “Nucleophilic displacement in 1,2:5,6-di-O-isopro pylidene-3-O-(p-tolylsulfonyl)- α -d- glucofuranose”, J. Org. Chem. (1969) 34, 3819– 3822

    Article  CAS  Google Scholar 

  35. Whistler, R. L.; Doner, L. W., “Displacement of the p-Toluenesulfonyloxy Group in 1,2:5, 6-Di-O-isopropyliedener-3-p-toluenesulfonyl- α -d- glucofuranose”, Methods Carbohydr. Chem. (1972) 6, 215–217

    CAS  Google Scholar 

  36. Reist, E. J.; Spencer, R. R.; Baker, B. R.; Goodman, L., “Sodium azide in dimethy- formamide for the preparation of amino sugars”, Chem. Ind. (London) (1962) 1794– 1795

    Google Scholar 

  37. Watanabe, K. A.; Goody, R. S.; Fox, J. J., “Nucleosides—LXVIII : Synthetic studies on nucleoside antibiotics. 5. 4-amino-2,3-unsaturated sugars related to the carbohydrate moiety of blasticidin S”, Tetrahedron (1970) 26, 3883–3903

    Article  CAS  Google Scholar 

  38. Hess, K.; Stenzel, H., “Über ein unterschiedliches Verhalten von alpha- und beta- Methyl-glucosid gegenüber Tosylchlorid-Pyridin”, Chem. Ber. (1935) 68, 981–989

    Google Scholar 

  39. Stevens, C. L.; Glinski, R. P.; Taylor, K. G.; Sirokman, F., “Rearrangement reactions of hexose 4-0-sulfonates in the presence of azide and phthalimide nucleophiles”, J. Org. Chem. (1970) 35, 592–596

    Article  CAS  Google Scholar 

  40. Jarý, J.; Samek, P. N., “Aminozucker, (XXIV1) Die Reaktion von Methyl-2.3-O-isopropyliden-4-O-mesyl- α -l- rhamnosid mit Natriumazid und Hydrazin”, Liebigs Ann. (1970) 740, 98–111

    Article  Google Scholar 

  41. Goodman, I., “Glycosyl ureids”, Adv. Carbohydr. Chem. (1958) 13, 215–236

    CAS  Google Scholar 

  42. Schoorl, M. N., “Sugar ureides”, Rec. Trav. Chim. (Pays-Bas) (1903) 22, 31

    Article  Google Scholar 

  43. Helferich, B.; Kosche, W., “Über Verbindungen von Aldosen mit Harnstoff und ihre Verwendung zur Synthese stickstoff-haltiger Glucoside”, Chem. Ber. (1926) 59, 69– 79

    Google Scholar 

  44. Benn, M. H.; Jones, A. S., “Glycosylureas. I. Preparation and some reactions of D- glucosylureas and D-ribosylureas”, J. Chem. Soc. (1960) 3837–3841

    Google Scholar 

  45. Jones, A. S.; Ross, G. W., “The structure of d-glucosylureas”, Tetrahedron (1962) 18, 189–193

    Article  CAS  Google Scholar 

  46. Jensen, W. E.; Jones, A. S.; Ross, G. W., “Glycosylureas. Part II. The synthesis and properties of 2-deoxy -d- ribosylureas”, J. Chem. Soc. (1965) 2463–2465

    Google Scholar 

  47. Lobry de Bruyn, C. A.; Franchimont, A. P. N., “Crystalline amido-derivatives of the carbohydrates”, Rec. Trav. Chim. (Pays-Bas) (1893) 12, 286–289

    Article  Google Scholar 

  48. Hodge, J. E.; Moy, B. F., “Preparation and properties of Dialditylamines”, J. Org. Chem. (1963) 28, 2784–2789

    Article  CAS  Google Scholar 

  49. Frush, H. L.; Isbell, H. S., “Mutarotation, hydrolysis, and structure of D-galactosylamines”, J. Res. Nat. Bur. Stand. (1951) 47, 239–247

    CAS  Google Scholar 

  50. Isbell, H. S.; Frush, H. L., “Mutarotation, hydrolysis, and rearrangement reactions of Glycosylamines”, J. Org. Chem. (1958) 23, 1309–1319

    Article  CAS  Google Scholar 

  51. Isbell, H. S.; Frush, H. L., “Mechanisms for the mutarotation and hydrolysis of the glycosylamines and the mutarotation of the sugars”, J. Res. Nat. Bur. Stand. (1951) 46, 132–144

    CAS  Google Scholar 

  52. Mitts, E.; Hixon, R. M., “The reaction of glucose with some amines”, J. Am. Chem. Soc. (1944) 66, 483–486

    Article  CAS  Google Scholar 

  53. Hodge, J. E.; Rist, C. E., “N-Glycosyl derivatives of secondary amines”, J. Am. Chem. Soc. (1952) 74, 1494–1497

    Article  CAS  Google Scholar 

  54. Hodge, J. E.; Rist, C. E., “The Amadori rearrangement under new conditions and its significance for non-enzymatic browning reactions”, J. Am. Chem. Soc. (1953) 75, 316–322

    Article  CAS  Google Scholar 

  55. Micheel, F.; Hagemann, G., “Darstellung aliphatischer Amadori-Produkte”, Chem. Ber. (1959) 92, 2836–2840

    Article  CAS  Google Scholar 

  56. Micheel, F.; Hagemann, G., “Darstellung aliphatischer Amadori-Produkte”, Chem. Ber. (1960) 93, 2381–2383

    Article  CAS  Google Scholar 

  57. Stepanenko, B. N.; Greshnykh, R. D., “Syntheses of some N-alkylglycosylamines”, Dokl. Akad. Nauk SSSR (1966) 170, 121–124

    CAS  Google Scholar 

  58. Ames, G. R.; King, T. A., “Long-Chain derivatives of sugars. I. Some reactions of N-Octadecyl -d- glucosylamine”, J. Org. Chem. (1962) 27, 390–395

    Article  CAS  Google Scholar 

  59. Erickson, J. G., “Reactions of long chain Amines. V. Reactions with sugars”, J. Am. Chem. Soc. (1955) 77, 2839–2843

    Article  CAS  Google Scholar 

  60. Sorokin, B., “Ueber Anilide der Glycose”, Chem. Ber. (1886) 19, 513

    Google Scholar 

  61. Sorokin, B., J. Russ. Phys. Chem. Soc., (1887) Pt. 1, 377

    Google Scholar 

  62. Sorokin, B., Berichte (1887) 20, (Referata), 783

    Google Scholar 

  63. Sorokin, B., J. prakt. Chem. (1888) 37, 291

    Article  Google Scholar 

  64. Weygand, F., “Darstellung von N-Glykosiden des Anilins und substituierter Aniline”, Chem. Ber. (1939) 72, 1663–1667

    Google Scholar 

  65. Amadori, M., Atti real. Acad. Lincei (1925) 2, 337; (1929) 9, 68; (1929) 9, 226; (1931) 13, 72

    CAS  Google Scholar 

  66. Hodge, J. E., “The Amadori Rearrangement”, Adv. Carbohydr. Chem. (1955) 10, 169–205

    Article  CAS  Google Scholar 

  67. Kuhn, R.; Dansi, A., “Über eine molekulare Umlagerung von N-Glucosiden”, Chem. Ber. (1936) 69, 1745–1754

    Google Scholar 

  68. Kuhn, R.; Weygand, F., “Die Amadori-Umlagerung”, Chem. Ber. (1937) 70, 769– 772

    Google Scholar 

  69. Weygand, F., “Über N-Glykoside, II. Mitteil.: Amadori-Umlagerungen”, Chem. Ber. (1940) 73, 1259–1278; German Pat. 727,402 (Oct. 1, 1942); U.S. Pat. 2,356,846 (Aug. 1, 1944)

    Google Scholar 

  70. Simon, H.; Kraus, A., “Mechanistische Untersuchungen über Glykosylamine, Zuck- erhydrazone, Amadori-Umlagerungsprodukte und Osazone”, Fortschr. Chem. Forsch. (1970) 14, 430–471

    Article  CAS  Google Scholar 

  71. Heyns, K.; Paulsen, H.; Eichstedt, R.; Rolle, M., “Über die Gewinnung von 2-Amino- Aldosen Durch Umlagerung von Ketosylaminen”, Chem. Ber. (1957) 90, 2039–2049

    Article  CAS  Google Scholar 

  72. Heyns, K.; Meinecke, K.-H., “Über Bildung und Darstellung von d-Glucosamin”, Chem. Ber. (1953) 86, 1453–1462

    Article  CAS  Google Scholar 

  73. Heyns, K.; Koch, W., “Über die Bildung eines Aminozuckers as d-Fructose und Ammoniak”, Z. Naturforsch. (1952) 7b, 486–488

    CAS  Google Scholar 

  74. Carson, J. F., “The reaction of fructose with isopropylamine and cyclohexylamine”, J. Am. Chem. Soc. (1955) 77, 1881–1884

    Article  CAS  Google Scholar 

  75. Carson, J. F., “The reaction of fructose with aliphatic amines”, J. Am. Chem. Soc. (1955) 77, 5957–5960

    Article  CAS  Google Scholar 

  76. Capon, B.; Connett, B. E., “The mechanism of the hydrolysis of N-aryl -d- glucosylamines”, J. Chem. Soc, (1965) 4497–4502

    Google Scholar 

  77. Jasinski, T.; Smiataczowa, K., “Mutarotation of N-(p-chlorophenyl) -d- glucosylamine in methanol-dioxane mixtures in the presence of benzoic acids”, Z. phys. Chem. (1967) 235, 49–56

    Google Scholar 

  78. Jasinski, T.; Smiataczowa, K.; Sokolowski, J., “Mutarotation of N-glycosides as a new method of acid strength studies. IV. Thermodynamic characteristics of mutarotation of N-C-glucosyl-p-chloroaniline in methanol catalyzed by benzoic acid and its derivatives”, Rocz. Chem. (1968) 42, 107–115

    CAS  Google Scholar 

  79. Willi, A. V.; Robertson, R. E., “A kinetic study of the hydrolysis of Benzalaniline”, Canad. J. Chem. (1963) 31, 361–376

    Article  Google Scholar 

  80. Willi, A. V., “Kinetik der Hydrolyse von Benzalanilin II: Die pH-Abhängigkeit der Reaktionsgeschwindigkeit in ungepufferten Lösungen und die Rolle der Aminoalkohol-Zwischenstufe”, Helv. Chim. Acta (1956) 39, 1193–1203

    Article  CAS  Google Scholar 

  81. Cordes, E. H.; Jencks, W. P., “The mechanism of hydrolysis of schiff bases derived from aliphatic amines”, J. Am. Chem. Soc. (1963) 85, 2843–2848

    Article  CAS  Google Scholar 

  82. Capon, B., “Mechanism in carbohydrate chemistry”, Chem. Rev. (1969) 69, 407–498

    Article  CAS  Google Scholar 

  83. Fujii, T.; Saito, T.; Nakasaka, T, “Purines. XXXIV. 3-Methyladenosine and 3- methyl-2’-deoxyadenosine: Their synthesis, glycosidic hydrolysis, and ring fission”, Chem. Prarm. Bull. (1989) 37, 2601–2609

    CAS  Google Scholar 

  84. Lindahl, T.; Nyberg, B., “Rate of depurination of native deoxyribonucleic acid”, Biochemistry (1972) 11, 3610–3618

    Article  CAS  Google Scholar 

  85. Gates, K. S.; Nooner, T.; Dutta, S., “Biologically relevant chemical reactions of N7-Alkylguanine Residues in DNA”, Chem. Res. Toxicol. (2004) 17, 839–856

    Article  CAS  Google Scholar 

  86. Lindahl, T.; Karlstrom, O., “Heat-induced depyrimidination of deoxyribonucleic acid in neutral solution”, Biochemistry (1973) 12, 5151–5154

    Article  CAS  Google Scholar 

  87. Kampf, G.; Kapinos, L. E.; Griesser, R.; Lippert, B.; Sigel, H., “Comparison of the acid-base properties of purine derivatives in aqueous solution. Determination of intrinsic proton affinities of various basic sites”, J. Chem. Soc. Perkin Trans. 2 (2002)1320–1327

    Google Scholar 

  88. Zoltewicz, J. A.; Clark, D. F.; Sharpless, T. W.; Grahe, G., “Kinetics and mechanism of the acid-catalyzed hydrolysis of some purine nucleosides”, J. Am. Chem. Soc. (1970) 92, 1741–1750

    Article  CAS  Google Scholar 

  89. Venner, H., “Nucleic acids. IX. Stability of the N-glycosidic linkage of nucleosides”, Hoppe-Seyler’s Z. Physiol. Chem. (1964) 339, 14–27

    CAS  Google Scholar 

  90. Cadet, J.; Teoule, R., “Nucleic acid hydrolysis. I. Isomerization and anomerization of pyrimidic deoxyribonucleosides in an acidic medium”, J. Am. Chem. Soc. (1974) 96, 6517–6519

    Article  CAS  Google Scholar 

  91. Venner, H., “Nucleic acids. XII. Stability of the N-glycoside linkage in nucleotides”, Hoppe-Seyler’s Z. Physiol. Chem. (1966) 344, 189–196

    CAS  Google Scholar 

  92. Garrett, E. R.; Seydel, , J. K.; Sharpen, A. J., “The Acid-Catalyzed solvolysis of Pyrimidine Nucleosides”, J. Org. Chem. (1966) 31,2219–2227

    Article  CAS  Google Scholar 

  93. Shapiro, R.; Kang, S., “Uncatalyzed hydrolysis of deoxyuridine, thymidine, and 5- bromodeoxyuridine”, Biochemistry (1969) 8, 180–1810

    Google Scholar 

  94. Shapiro, R.; Danzig, M., “Acidic hydrolysis of deoxycytidine and deoxyuridine derivatives. General mechanism of deoxyribonucleoside hydrolysis”, Biochemistry (1972) 11,23–29

    Article  CAS  Google Scholar 

  95. Hevesi, L.; Wolfson-Davidson, E.; Nagy, J. B.; Nagy, O. B.; Bruylants, A., “Contribution to the mechanism of the acid-catalyzed hydrolysis of purine nucleosides”, J. Am. Chem. Soc. (1972) 94, 4715–4720

    Article  CAS  Google Scholar 

  96. Bennet, A. J.; Kitos, T. E., “Mechanisms of glycopyranosyl and 5-thioglycopyranosyl transfer reactions in solution”, J. Chem. Soc. Perkin Trans. (2002) 2, 1207–1222

    Google Scholar 

  97. Berti, P. J.; Tanaka, K. S. E., “Transition state analysis using multiple kinetic isotope effects: mechanisms of enzymatic and non-enzymatic glycoside hydrolysis and transfer”, Adv. Phys. Org. Chem. (2002) 37, 239–314

    Article  CAS  Google Scholar 

  98. BeMiller, J. N., “Acid-catalyzed Hydrolysis of Glycosides”, Adv. Carbohydr. Chem. (1967) 22, 25

    Article  CAS  Google Scholar 

  99. Jencks, W. P., “How does a reaction choose its mechanism?”, Chem. Soc. Rev. (1981) 10, 345

    Article  CAS  Google Scholar 

  100. Mentch, F.; Parkin, D. W.; Schramm, V. L., “Transition-state structures for N- glycoside hydrolysis of AMP by acid and by AMP nucleosidase in the presence and absence of allosteric activator”, Biochemistry (1987) 26, 921–930

    Article  CAS  Google Scholar 

  101. Berti, P. J.; Schramm, V. L., “The transition-State Structure of the Solvolytic Hydrolysis of NAD +”, J. Am. Chem. Soc. (1997) 119, 1206

    Google Scholar 

  102. McCann and Berti, unpublished results

    Google Scholar 

  103. Michelson, A. M., “The Chemistry of Nucleosides and Nucleotides”, Academic Press, London and New York, 1963, pp. 26–27

    Google Scholar 

  104. Michelson, A. M.; Todd, A. R., “Nucleotides. Part XXIII. Mononucleotides derived from deoxycytidine. Note on the structure of cytidylic acids a and b”, J. Chem. Soc. (1954) 34–40

    Google Scholar 

  105. Khorana, H. G.; Turner, A. F.; Vizsolyi, J. P., “Studies on Polynucleotides. IX. Experiments on the Polymerization of Mononucleotides. Certain Protected Derivatives of Deoxycytidine-5’ Phosphate and the Synthesis of Deoxycytidine Polynucleotides”, J. Am. Chem. Soc. (1961) 83, 686–698

    Article  CAS  Google Scholar 

  106. Gilham, P. T.; Khorana, H. G., “Studies on Polynucleotides. I. A New and general method for the chemical synthesis of the C 5 ’-C 3 ’ internucleotidic linkage. Synthesis of Deoxyribo-dinucleotides”, J. Am. Chem. Soc. (1958) 80, 6212–6222

    Article  CAS  Google Scholar 

  107. Michelson, A. M., “The organic chemistry of deoxynucleosides and deoxynucleotides”, Tetrahedron (1948) 2, 333–340

    Article  Google Scholar 

  108. Shapiro, H. S.; Chargaff, E., “Studies on the nucleoside arrangement in deoxyribonucleic acids I. The relationship between the production of pyrimidine nucleoside 3’5’-diphosphates and specific features of nucleotide sequence”, Biochim. Biophys. Acta (1957) 26, 596–608

    Article  CAS  Google Scholar 

  109. Shapiro, H. S.; Chargaff, E., “Studies on nucleotide arrangement in deoxyribonucleic acids III. Identification of methylcytidine derivatives among the acid degradation products of rye germ DNA”, Biochim. Biophys. Acta (1960) 39, 62–67

    Article  CAS  Google Scholar 

  110. Brown, D. M.; Fasman, G., D.; Magrath, D. I.;; Todd, A. R., “Nucleotides. Part XXVII. The structures of adenylic acids a and b”, J. Chem. Soc. (1954) 1448–1455

    Google Scholar 

  111. Wempen, I.; Doerr, I. L.; Kaplan, L.; Fox, J. J., “Pyrimidine Nucleosides. VI. Nitration of Nucleosides”, J. Am. Chem. Soc. (1960) 82, 1624–1629

    Article  CAS  Google Scholar 

  112. Loverix, S.; Geerlings, P.; McNaughton, M.; Augustyns, K.; Vandemeulebroucke, A.; Steyaert, J.; Verses, W., “Substrate-assisted leaving group activation in Enzyme-catalyzed N-Glycosidic Bond Cleavage”, J. Biol. Chem. (2005) 28, 14799–14802

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Momcilo Miljković .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Miljković, M. (2010). Amino Sugars. In: Carbohydrates. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92265-2_9

Download citation

Publish with us

Policies and ethics