Carbohydrates pp 221-244 | Cite as

Amino Sugars

  • Momcilo Miljković


Amino sugars are monosaccharides in which one or more hydroxyl groups of a sugar chain is replaced by an amino group. The amino group(s) can be free or derivatized (it is usually acylated, but it can be alkylated, too).


Amino Sugar Pyrimidine Nucleoside Ring Oxygen Nucleophilic Displacement Sulfonic Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gottschalk, A., “Structural relationship between Sialic Acid, Neuraminic Acid and 2- Carboxy-Pyrrole”, Nature (1955) 176, 881–882CrossRefGoogle Scholar
  2. 2.
    Bolton, C. H.; Foster, A. B.; Stacey, M.; Webber, J. M., “Carbohydrate components of antibiotics. Part I. Degradation of desosamine by alkali: its absolute configuration at position 5”, J. Chem. Soc. (1961) 4831–4836Google Scholar
  3. 3.
    Bolton, C. H.; Foster, A. B.; Stacey, M.; Webber, J. M., “The configuration of desosamine”, Chem. Ind. (London) (1962) 1945–1946Google Scholar
  4. 4.
    Walters, D. R.; Dutcher, J. D.; Wintersteiner, O., “The structure of mycosamine”, J. Am. Chem. Soc. (1957) 79, 5076–5077CrossRefGoogle Scholar
  5. 5.
    Dutcher, J. D.; Walters, D. R.; Wintersteiner, O., “Nystatin. III. Mycosamine: Preparation and determination of structure”, J. Org. Chem. (1963) 28, 995–999CrossRefGoogle Scholar
  6. 6.
    von Saltza, M. H.; Reid, J.; Dutcher, J. D.; Wintersteiner, O., “Nystatin. II. The Stereochemistry of Mycosamine”, J. Am. Chem. Soc. (1961) 83, 2785–2785Google Scholar
  7. 7.
    von Saltza, M. H.; Dutcher, J. D.; Reid, J.; Wintersteiner, O., “Nystatin IV. The Stereochemistry of Mycosamine”, J. Org. Chem. (1963) 28, 999–1004CrossRefGoogle Scholar
  8. 8.
    Haskell, T. H.; Hanessian, S., “The configuration of paromose”, J. Org. Chem. (1963) 28, 2598–2604CrossRefGoogle Scholar
  9. 9.
    Strange, R. E., “The structure of an Amino Sugar present in Certain Spores and Bacterial cell walls”, Biochem. J. (1956) 64, 23PGoogle Scholar
  10. 10.
    Strange, R. E.; Kent, L. H., “The isolation, characterization and chemical synthesis of muramic acid”, Biochem. J. (1959), 71, 333–339Google Scholar
  11. 11.
    Fürst, A.; Plattner, P. A., Proc. Intern. Congr. Pure Appl. Chem., 12th, New York, p. 405Google Scholar
  12. 12.
    Overend, W. G.; Vaughan, G., “Sugar transformations-direction of ring opening of anhydrosugars”, Chem. Ind. (London) (1955) 995–1000Google Scholar
  13. 13.
    Newth, F. H., “Sugar epoxides”, Quart. Rev. (London) (1959) 13, 30–47CrossRefGoogle Scholar
  14. 14.
    Parker, R. E.; Isaacs, N. S., “Mechanisms of epoxide reaction”, Chem. Rev. (1959) 59, 737–799CrossRefGoogle Scholar
  15. 15.
    Huber, G.; Schier, O., “Zum Verständnis der Epoxydöffnung an Pyranose-Ringen”, Helv. Chim. Acta (1960) 43, 129–135CrossRefGoogle Scholar
  16. 16.
    Haworth, W. N.; Lake, W. H. G.; Peat, S., “The configuration of glucosamine (chitosamine)”, J. Chem. Soc. (1939) 271–274Google Scholar
  17. 17.
    Wiggins, L. F., “The conversion of galactose into derivatives of d-idose”, J. Chem. Soc. (1944) 522–526Google Scholar
  18. 18.
    Buchanan, J. G.; Miller, K. J., “The action of ammonia on methyl 2,3-anhydro-4,6-O- benzylidene- -d- guloside and -taloside”, J. Chem. Soc. (1960) 3392–3394Google Scholar
  19. 19.
    Jeanloz, R. W.; Tarasiejska-Glazer, Z.; Jeanloz, D. A., “2-Amino-2-deoxy -d- idose (D-Idosamine) and 2-Amino-2-deoxy -d- talose (D-Talosamine)”, J. Org. Chem. (1961) 26, 532–536CrossRefGoogle Scholar
  20. 20.
    Jarý, J.; Ćapek, K.; Kovář, J., “Synthesis of derivatives of 3,6-dideoxy-3-amino -l- idose”, Coll. Czech. Chem. Commun. (1963) 28, 2171–2181Google Scholar
  21. 21.
    Charalambous, G.; Percival, E., “Products from the alkaline and reductive fission of the epoxide ring of methyl 3 : 4- and 2 : 3-anhydro-6-deoxy- α -l- taloside and of their methylated derivatives”, J. Chem. Soc. (1954) 2443 – 2448Google Scholar
  22. 22.
    Stevens, C. L.; Gupta, S. K.; Glinski, R. P.; Taylor, K. G.; Blumbergs, P.; Schaffner, C. P.; Lee, C.-H., “Proof of structure, stereochemistry, and synthesis of perosamine (4-amino-4,6-dideoxy -d- mannose) derivatives”, Carbohydr. Res. (1968) 7, 502–504CrossRefGoogle Scholar
  23. 23.
    Stevens, C. L.; Glinski, R. P.; Taylor, K. G.; Blumbergs, P.; Gupta, S. K., “Synthesis and proof of structure of perosamine (4-amino-4,6-dideoxy -d- mannose) derivatives”, J. Am. Chem. Soc. (1970) 92, 3160–3168CrossRefGoogle Scholar
  24. 24.
    Kovàř, J.; Jarý, J., “Amino sugars. XV. Synthesis of derivatives of 3,6-diamino-3,6- dideoxy -l- talose”, Coll. Czech. Chem. Commun. (1968) 33, 549–555Google Scholar
  25. 25.
    Fischer, E.; Zach, K., “Neue Synthese von Basen der Zuckergruppe”, Chem. Ber. (1911) 44, 132–135CrossRefGoogle Scholar
  26. 26.
    Akiya, S.; Ossawa, T., “Nitrogen-containing sugars. III. Synthesis and deamination of 5-amino-5-deoxy-1,2-isopropylidene -d- xylofuranose”, Yakugaku Zasshi (1956) 76, 1280–1282Google Scholar
  27. 27.
    Helferich, B.; Burgdorf, M., “Ueber derivate der D-xylose”, Tetrahedron (1958) 3, 274–278CrossRefGoogle Scholar
  28. 28.
    Wolfrom, M. L; Shafizadeh, F.; Armstrong, R. K.; Shen Han, T. M., “Synthesis of Amino Sugars by reduction of Hydrazine Derivatives; D- and L-Ribosamine, D- Lyxosamine1-3”, J. Am. Chem. Soc. (1959) 81, 3716–3719CrossRefGoogle Scholar
  29. 29.
    Meyer zu Reckendorf, W., “Synthese der 2.6-Diamino-2.6-didesoxy -l- idose”, Angew. Chem. (1963) 75, 573–573Google Scholar
  30. 30.
    Meyer zu Reckendorf, W., “ Diaminozucker, II. Die Synthese der 2.6-Didesoxy- 2.6- diamino -d- galaktose”, Chem. Ber. (1963) 96, 2019–2023CrossRefGoogle Scholar
  31. 31.
    Freudenberg, K.; Burkhart, O.; Braun, E., “Zur Kenntnis der Aceton-Zucker, VIII.: Eine neue Amino-glucose”, Chem. Ber. (1926) 59, 714–720Google Scholar
  32. 32.
    Lemieux, R. U.; Chu, P., “1, -d- allose2: 5, 6-Di-O-isopropylidene 3-Deoxy-3-amino-”, J. Am. Chem. Soc. (1958) 80, 4745CrossRefGoogle Scholar
  33. 33.
    Freudenberg, K.; Brauns, F., “Zur Kenntnis der Aceton-Zucker, I.: Umwandlungen der Diaceton-glucose”, Chem. Ber. (1922) 55, 3233–3238Google Scholar
  34. 34.
    Nayak, U. G.; Whistler, R. L., “Nucleophilic displacement in 1,2:5,6-di-O-isopro pylidene-3-O-(p-tolylsulfonyl)- α -d- glucofuranose”, J. Org. Chem. (1969) 34, 3819– 3822CrossRefGoogle Scholar
  35. 35.
    Whistler, R. L.; Doner, L. W., “Displacement of the p-Toluenesulfonyloxy Group in 1,2:5, 6-Di-O-isopropyliedener-3-p-toluenesulfonyl- α -d- glucofuranose”, Methods Carbohydr. Chem. (1972) 6, 215–217Google Scholar
  36. 36.
    Reist, E. J.; Spencer, R. R.; Baker, B. R.; Goodman, L., “Sodium azide in dimethy- formamide for the preparation of amino sugars”, Chem. Ind. (London) (1962) 1794– 1795Google Scholar
  37. 37.
    Watanabe, K. A.; Goody, R. S.; Fox, J. J., “Nucleosides—LXVIII : Synthetic studies on nucleoside antibiotics. 5. 4-amino-2,3-unsaturated sugars related to the carbohydrate moiety of blasticidin S”, Tetrahedron (1970) 26, 3883–3903CrossRefGoogle Scholar
  38. 38.
    Hess, K.; Stenzel, H., “Über ein unterschiedliches Verhalten von alpha- und beta- Methyl-glucosid gegenüber Tosylchlorid-Pyridin”, Chem. Ber. (1935) 68, 981–989Google Scholar
  39. 39.
    Stevens, C. L.; Glinski, R. P.; Taylor, K. G.; Sirokman, F., “Rearrangement reactions of hexose 4-0-sulfonates in the presence of azide and phthalimide nucleophiles”, J. Org. Chem. (1970) 35, 592–596CrossRefGoogle Scholar
  40. 40.
    Jarý, J.; Samek, P. N., “Aminozucker, (XXIV1) Die Reaktion von Methyl-2.3-O-isopropyliden-4-O-mesyl- α -l- rhamnosid mit Natriumazid und Hydrazin”, Liebigs Ann. (1970) 740, 98–111CrossRefGoogle Scholar
  41. 41.
    Goodman, I., “Glycosyl ureids”, Adv. Carbohydr. Chem. (1958) 13, 215–236Google Scholar
  42. 42.
    Schoorl, M. N., “Sugar ureides”, Rec. Trav. Chim. (Pays-Bas) (1903) 22, 31CrossRefGoogle Scholar
  43. 43.
    Helferich, B.; Kosche, W., “Über Verbindungen von Aldosen mit Harnstoff und ihre Verwendung zur Synthese stickstoff-haltiger Glucoside”, Chem. Ber. (1926) 59, 69– 79Google Scholar
  44. 44.
    Benn, M. H.; Jones, A. S., “Glycosylureas. I. Preparation and some reactions of D- glucosylureas and D-ribosylureas”, J. Chem. Soc. (1960) 3837–3841Google Scholar
  45. 45.
    Jones, A. S.; Ross, G. W., “The structure of d-glucosylureas”, Tetrahedron (1962) 18, 189–193CrossRefGoogle Scholar
  46. 46.
    Jensen, W. E.; Jones, A. S.; Ross, G. W., “Glycosylureas. Part II. The synthesis and properties of 2-deoxy -d- ribosylureas”, J. Chem. Soc. (1965) 2463–2465Google Scholar
  47. 47.
    Lobry de Bruyn, C. A.; Franchimont, A. P. N., “Crystalline amido-derivatives of the carbohydrates”, Rec. Trav. Chim. (Pays-Bas) (1893) 12, 286–289CrossRefGoogle Scholar
  48. 48.
    Hodge, J. E.; Moy, B. F., “Preparation and properties of Dialditylamines”, J. Org. Chem. (1963) 28, 2784–2789CrossRefGoogle Scholar
  49. 49.
    Frush, H. L.; Isbell, H. S., “Mutarotation, hydrolysis, and structure of D-galactosylamines”, J. Res. Nat. Bur. Stand. (1951) 47, 239–247Google Scholar
  50. 50.
    Isbell, H. S.; Frush, H. L., “Mutarotation, hydrolysis, and rearrangement reactions of Glycosylamines”, J. Org. Chem. (1958) 23, 1309–1319CrossRefGoogle Scholar
  51. 51.
    Isbell, H. S.; Frush, H. L., “Mechanisms for the mutarotation and hydrolysis of the glycosylamines and the mutarotation of the sugars”, J. Res. Nat. Bur. Stand. (1951) 46, 132–144Google Scholar
  52. 52.
    Mitts, E.; Hixon, R. M., “The reaction of glucose with some amines”, J. Am. Chem. Soc. (1944) 66, 483–486CrossRefGoogle Scholar
  53. 53.
    Hodge, J. E.; Rist, C. E., “N-Glycosyl derivatives of secondary amines”, J. Am. Chem. Soc. (1952) 74, 1494–1497CrossRefGoogle Scholar
  54. 54.
    Hodge, J. E.; Rist, C. E., “The Amadori rearrangement under new conditions and its significance for non-enzymatic browning reactions”, J. Am. Chem. Soc. (1953) 75, 316–322CrossRefGoogle Scholar
  55. 55.
    Micheel, F.; Hagemann, G., “Darstellung aliphatischer Amadori-Produkte”, Chem. Ber. (1959) 92, 2836–2840CrossRefGoogle Scholar
  56. 56.
    Micheel, F.; Hagemann, G., “Darstellung aliphatischer Amadori-Produkte”, Chem. Ber. (1960) 93, 2381–2383CrossRefGoogle Scholar
  57. 57.
    Stepanenko, B. N.; Greshnykh, R. D., “Syntheses of some N-alkylglycosylamines”, Dokl. Akad. Nauk SSSR (1966) 170, 121–124Google Scholar
  58. 58.
    Ames, G. R.; King, T. A., “Long-Chain derivatives of sugars. I. Some reactions of N-Octadecyl -d- glucosylamine”, J. Org. Chem. (1962) 27, 390–395CrossRefGoogle Scholar
  59. 59.
    Erickson, J. G., “Reactions of long chain Amines. V. Reactions with sugars”, J. Am. Chem. Soc. (1955) 77, 2839–2843CrossRefGoogle Scholar
  60. 60.
    Sorokin, B., “Ueber Anilide der Glycose”, Chem. Ber. (1886) 19, 513Google Scholar
  61. 61.
    Sorokin, B., J. Russ. Phys. Chem. Soc., (1887) Pt. 1, 377Google Scholar
  62. 62.
    Sorokin, B., Berichte (1887) 20, (Referata), 783Google Scholar
  63. 63.
    Sorokin, B., J. prakt. Chem. (1888) 37, 291CrossRefGoogle Scholar
  64. 64.
    Weygand, F., “Darstellung von N-Glykosiden des Anilins und substituierter Aniline”, Chem. Ber. (1939) 72, 1663–1667Google Scholar
  65. 65.
    Amadori, M., Atti real. Acad. Lincei (1925) 2, 337; (1929) 9, 68; (1929) 9, 226; (1931) 13, 72Google Scholar
  66. 66.
    Hodge, J. E., “The Amadori Rearrangement”, Adv. Carbohydr. Chem. (1955) 10, 169–205CrossRefGoogle Scholar
  67. 67.
    Kuhn, R.; Dansi, A., “Über eine molekulare Umlagerung von N-Glucosiden”, Chem. Ber. (1936) 69, 1745–1754Google Scholar
  68. 68.
    Kuhn, R.; Weygand, F., “Die Amadori-Umlagerung”, Chem. Ber. (1937) 70, 769– 772Google Scholar
  69. 69.
    Weygand, F., “Über N-Glykoside, II. Mitteil.: Amadori-Umlagerungen”, Chem. Ber. (1940) 73, 1259–1278; German Pat. 727,402 (Oct. 1, 1942); U.S. Pat. 2,356,846 (Aug. 1, 1944)Google Scholar
  70. 70.
    Simon, H.; Kraus, A., “Mechanistische Untersuchungen über Glykosylamine, Zuck- erhydrazone, Amadori-Umlagerungsprodukte und Osazone”, Fortschr. Chem. Forsch. (1970) 14, 430–471CrossRefGoogle Scholar
  71. 71.
    Heyns, K.; Paulsen, H.; Eichstedt, R.; Rolle, M., “Über die Gewinnung von 2-Amino- Aldosen Durch Umlagerung von Ketosylaminen”, Chem. Ber. (1957) 90, 2039–2049CrossRefGoogle Scholar
  72. 72.
    Heyns, K.; Meinecke, K.-H., “Über Bildung und Darstellung von d-Glucosamin”, Chem. Ber. (1953) 86, 1453–1462CrossRefGoogle Scholar
  73. 73.
    Heyns, K.; Koch, W., “Über die Bildung eines Aminozuckers as d-Fructose und Ammoniak”, Z. Naturforsch. (1952) 7b, 486–488Google Scholar
  74. 74.
    Carson, J. F., “The reaction of fructose with isopropylamine and cyclohexylamine”, J. Am. Chem. Soc. (1955) 77, 1881–1884CrossRefGoogle Scholar
  75. 75.
    Carson, J. F., “The reaction of fructose with aliphatic amines”, J. Am. Chem. Soc. (1955) 77, 5957–5960CrossRefGoogle Scholar
  76. 76.
    Capon, B.; Connett, B. E., “The mechanism of the hydrolysis of N-aryl -d- glucosylamines”, J. Chem. Soc, (1965) 4497–4502Google Scholar
  77. 77.
    Jasinski, T.; Smiataczowa, K., “Mutarotation of N-(p-chlorophenyl) -d- glucosylamine in methanol-dioxane mixtures in the presence of benzoic acids”, Z. phys. Chem. (1967) 235, 49–56Google Scholar
  78. 78.
    Jasinski, T.; Smiataczowa, K.; Sokolowski, J., “Mutarotation of N-glycosides as a new method of acid strength studies. IV. Thermodynamic characteristics of mutarotation of N-C-glucosyl-p-chloroaniline in methanol catalyzed by benzoic acid and its derivatives”, Rocz. Chem. (1968) 42, 107–115Google Scholar
  79. 79.
    Willi, A. V.; Robertson, R. E., “A kinetic study of the hydrolysis of Benzalaniline”, Canad. J. Chem. (1963) 31, 361–376CrossRefGoogle Scholar
  80. 80.
    Willi, A. V., “Kinetik der Hydrolyse von Benzalanilin II: Die pH-Abhängigkeit der Reaktionsgeschwindigkeit in ungepufferten Lösungen und die Rolle der Aminoalkohol-Zwischenstufe”, Helv. Chim. Acta (1956) 39, 1193–1203CrossRefGoogle Scholar
  81. 81.
    Cordes, E. H.; Jencks, W. P., “The mechanism of hydrolysis of schiff bases derived from aliphatic amines”, J. Am. Chem. Soc. (1963) 85, 2843–2848CrossRefGoogle Scholar
  82. 82.
    Capon, B., “Mechanism in carbohydrate chemistry”, Chem. Rev. (1969) 69, 407–498CrossRefGoogle Scholar
  83. 83.
    Fujii, T.; Saito, T.; Nakasaka, T, “Purines. XXXIV. 3-Methyladenosine and 3- methyl-2’-deoxyadenosine: Their synthesis, glycosidic hydrolysis, and ring fission”, Chem. Prarm. Bull. (1989) 37, 2601–2609Google Scholar
  84. 84.
    Lindahl, T.; Nyberg, B., “Rate of depurination of native deoxyribonucleic acid”, Biochemistry (1972) 11, 3610–3618CrossRefGoogle Scholar
  85. 85.
    Gates, K. S.; Nooner, T.; Dutta, S., “Biologically relevant chemical reactions of N7-Alkylguanine Residues in DNA”, Chem. Res. Toxicol. (2004) 17, 839–856CrossRefGoogle Scholar
  86. 86.
    Lindahl, T.; Karlstrom, O., “Heat-induced depyrimidination of deoxyribonucleic acid in neutral solution”, Biochemistry (1973) 12, 5151–5154CrossRefGoogle Scholar
  87. 87.
    Kampf, G.; Kapinos, L. E.; Griesser, R.; Lippert, B.; Sigel, H., “Comparison of the acid-base properties of purine derivatives in aqueous solution. Determination of intrinsic proton affinities of various basic sites”, J. Chem. Soc. Perkin Trans. 2 (2002)1320–1327Google Scholar
  88. 88.
    Zoltewicz, J. A.; Clark, D. F.; Sharpless, T. W.; Grahe, G., “Kinetics and mechanism of the acid-catalyzed hydrolysis of some purine nucleosides”, J. Am. Chem. Soc. (1970) 92, 1741–1750CrossRefGoogle Scholar
  89. 89.
    Venner, H., “Nucleic acids. IX. Stability of the N-glycosidic linkage of nucleosides”, Hoppe-Seyler’s Z. Physiol. Chem. (1964) 339, 14–27Google Scholar
  90. 90.
    Cadet, J.; Teoule, R., “Nucleic acid hydrolysis. I. Isomerization and anomerization of pyrimidic deoxyribonucleosides in an acidic medium”, J. Am. Chem. Soc. (1974) 96, 6517–6519CrossRefGoogle Scholar
  91. 91.
    Venner, H., “Nucleic acids. XII. Stability of the N-glycoside linkage in nucleotides”, Hoppe-Seyler’s Z. Physiol. Chem. (1966) 344, 189–196Google Scholar
  92. 92.
    Garrett, E. R.; Seydel, , J. K.; Sharpen, A. J., “The Acid-Catalyzed solvolysis of Pyrimidine Nucleosides”, J. Org. Chem. (1966) 31,2219–2227CrossRefGoogle Scholar
  93. 93.
    Shapiro, R.; Kang, S., “Uncatalyzed hydrolysis of deoxyuridine, thymidine, and 5- bromodeoxyuridine”, Biochemistry (1969) 8, 180–1810Google Scholar
  94. 94.
    Shapiro, R.; Danzig, M., “Acidic hydrolysis of deoxycytidine and deoxyuridine derivatives. General mechanism of deoxyribonucleoside hydrolysis”, Biochemistry (1972) 11,23–29CrossRefGoogle Scholar
  95. 95.
    Hevesi, L.; Wolfson-Davidson, E.; Nagy, J. B.; Nagy, O. B.; Bruylants, A., “Contribution to the mechanism of the acid-catalyzed hydrolysis of purine nucleosides”, J. Am. Chem. Soc. (1972) 94, 4715–4720CrossRefGoogle Scholar
  96. 96.
    Bennet, A. J.; Kitos, T. E., “Mechanisms of glycopyranosyl and 5-thioglycopyranosyl transfer reactions in solution”, J. Chem. Soc. Perkin Trans. (2002) 2, 1207–1222Google Scholar
  97. 97.
    Berti, P. J.; Tanaka, K. S. E., “Transition state analysis using multiple kinetic isotope effects: mechanisms of enzymatic and non-enzymatic glycoside hydrolysis and transfer”, Adv. Phys. Org. Chem. (2002) 37, 239–314CrossRefGoogle Scholar
  98. 98.
    BeMiller, J. N., “Acid-catalyzed Hydrolysis of Glycosides”, Adv. Carbohydr. Chem. (1967) 22, 25CrossRefGoogle Scholar
  99. 99.
    Jencks, W. P., “How does a reaction choose its mechanism?”, Chem. Soc. Rev. (1981) 10, 345CrossRefGoogle Scholar
  100. 100.
    Mentch, F.; Parkin, D. W.; Schramm, V. L., “Transition-state structures for N- glycoside hydrolysis of AMP by acid and by AMP nucleosidase in the presence and absence of allosteric activator”, Biochemistry (1987) 26, 921–930CrossRefGoogle Scholar
  101. 101.
    Berti, P. J.; Schramm, V. L., “The transition-State Structure of the Solvolytic Hydrolysis of NAD +”, J. Am. Chem. Soc. (1997) 119, 1206Google Scholar
  102. 102.
    McCann and Berti, unpublished resultsGoogle Scholar
  103. 103.
    Michelson, A. M., “The Chemistry of Nucleosides and Nucleotides”, Academic Press, London and New York, 1963, pp. 26–27Google Scholar
  104. 104.
    Michelson, A. M.; Todd, A. R., “Nucleotides. Part XXIII. Mononucleotides derived from deoxycytidine. Note on the structure of cytidylic acids a and b”, J. Chem. Soc. (1954) 34–40Google Scholar
  105. 105.
    Khorana, H. G.; Turner, A. F.; Vizsolyi, J. P., “Studies on Polynucleotides. IX. Experiments on the Polymerization of Mononucleotides. Certain Protected Derivatives of Deoxycytidine-5’ Phosphate and the Synthesis of Deoxycytidine Polynucleotides”, J. Am. Chem. Soc. (1961) 83, 686–698CrossRefGoogle Scholar
  106. 106.
    Gilham, P. T.; Khorana, H. G., “Studies on Polynucleotides. I. A New and general method for the chemical synthesis of the C 5 ’-C 3 ’ internucleotidic linkage. Synthesis of Deoxyribo-dinucleotides”, J. Am. Chem. Soc. (1958) 80, 6212–6222CrossRefGoogle Scholar
  107. 107.
    Michelson, A. M., “The organic chemistry of deoxynucleosides and deoxynucleotides”, Tetrahedron (1948) 2, 333–340CrossRefGoogle Scholar
  108. 108.
    Shapiro, H. S.; Chargaff, E., “Studies on the nucleoside arrangement in deoxyribonucleic acids I. The relationship between the production of pyrimidine nucleoside 3’5’-diphosphates and specific features of nucleotide sequence”, Biochim. Biophys. Acta (1957) 26, 596–608CrossRefGoogle Scholar
  109. 109.
    Shapiro, H. S.; Chargaff, E., “Studies on nucleotide arrangement in deoxyribonucleic acids III. Identification of methylcytidine derivatives among the acid degradation products of rye germ DNA”, Biochim. Biophys. Acta (1960) 39, 62–67CrossRefGoogle Scholar
  110. 110.
    Brown, D. M.; Fasman, G., D.; Magrath, D. I.;; Todd, A. R., “Nucleotides. Part XXVII. The structures of adenylic acids a and b”, J. Chem. Soc. (1954) 1448–1455Google Scholar
  111. 111.
    Wempen, I.; Doerr, I. L.; Kaplan, L.; Fox, J. J., “Pyrimidine Nucleosides. VI. Nitration of Nucleosides”, J. Am. Chem. Soc. (1960) 82, 1624–1629CrossRefGoogle Scholar
  112. 112.
    Loverix, S.; Geerlings, P.; McNaughton, M.; Augustyns, K.; Vandemeulebroucke, A.; Steyaert, J.; Verses, W., “Substrate-assisted leaving group activation in Enzyme-catalyzed N-Glycosidic Bond Cleavage”, J. Biol. Chem. (2005) 28, 14799–14802CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Biochemistry & Molecular BiologyPennsylvania State UniversityHersheyUSA

Personalised recommendations