Carbohydrates pp 191-219 | Cite as




The monosaccharide derivatives obtained by intramolecular elimination of a molecule of water with simultaneous formation of a new three-, four-, five-, or six-membered heterocyclic ring are called anhydrosugars. The anhydrosugars are subdivided into two groups: (1) the anhydrosugars that involve the anomeric hydroxyl group in their formation resembling thus the intramolecular glycosides; they are called glycosanes and (2) the anhydrosugars that do not involve the anomeric hydroxyl group in their formation; they are simply called anhydrosugars. There are several reviews of anhydrosugars [1–3].


Epoxide Ring Pyranose Ring Phosphorus Pentachloride Hydrogen Bromide Carbohydrate Derivative 


  1. 1.
    Peat, S, “The chemistry of anhydro sugars”, Adv. Carbohydr. Chem. (1946), 2, 37–77Google Scholar
  2. 2.
    Schuerch, C., “Synthesis and polymerization of anhydro sugars”, Adv. Carbohydr. Chem. Biochem. (1981) 39, 157–212CrossRefGoogle Scholar
  3. 3.
    Černý, M., “Chemistry of anhydro sugars”, Adv. Carbohydr. Chem. Biochem. (2003) 58, 121–198CrossRefGoogle Scholar
  4. 4.
    Tanret, C., “Levoglucosan”, Compt. Rend. (1894) 119, 158–161Google Scholar
  5. 5.
    Tanret, C., Bull. Soc. Chim. (France) (1894) 211, 949Google Scholar
  6. 6.
    McCloskey, C. M.; Coleman, G. H., “A proposed inversion mechanism for the formation of Levoglucosan from Phenyl β - d -Glucoside and Trimethylglucosylammoniium compounds”, J. Org. Chem. (1945) 10, 184–193CrossRefGoogle Scholar
  7. 7.
    Bardolph, M. P.; Coleman, G. H., “Mechanism of the formation of Levoglucosan”, J. Org. Chem. (1950) 15, 169–173CrossRefGoogle Scholar
  8. 8.
    Dyfverman, A.; Lindberg, B., “The alkaline hydrolysis of phenyl β-glucosides”, Acta Chem. Scand. (1950) 4, 878–884CrossRefGoogle Scholar
  9. 9.
    Lemieux, R. U., “Some implications in carbohydrate chemistry of theories relating to the mechanisms of replacement reaction”, Adv. Carbohydr. Chem. (1954) 9, 1–57CrossRefGoogle Scholar
  10. 10.
    Ballou, C. E., “Alkali-Sensitive Glycosides”, Adv. Carbohydr. Chem. (1954) 9, 59–95CrossRefGoogle Scholar
  11. 11.
    Micheel, F.; Klemer, A., “Über den Reaktionsmechanismus der Anhydridbildung bei Zuckern”, Chem. Ber. (1958) 91, 194–197CrossRefGoogle Scholar
  12. 12.
    Janson, J.; Lindberg, B., “Alkaline hydrolysis of glycosidic linkages. IV. Action of alkali on glucopyranosides”, Acta Chem. Scand. (1959) 13, 138–143CrossRefGoogle Scholar
  13. 13.
    Karrer, P.; Smirnoff, A. P., “Eine neue Methode zur Gewinnung von Anhydrozuckern”, Helv. Chim. Acta (1921) 4, 817–820CrossRefGoogle Scholar
  14. 14.
    Micheel, F., “Über das Galaktosan <α 1.5><β 1.6>. (Zuckeranhydride, I. Mitteil.)”, Chem. Ber. (1929) 62, 687–693Google Scholar
  15. 15.
    Zemplén, G.; Gerecs, A.; Valatin, T., “Über Lävomannosan”, Chem. Ber. (1940) 73B, 575–580Google Scholar
  16. 16.
    Micheel, F.; Klemer, A., “Eine neue Darstellungsmethode für Zuckeranhydride”, Chem. Ber. (1952) 85, 187–188CrossRefGoogle Scholar
  17. 17.
    Micheel, F.; Baum, G., “Darstellung von Zuckeranhydriden mit Hilfe von alkalischen Austauschern”, Chem. Ber. (1955) 88, 479–481CrossRefGoogle Scholar
  18. 18.
    Micheel, F.; Klemer, A., “Glycosyl Fluorides and Azides”, Adv. Carbohydr. Chem. (1961) 16, 85–103Google Scholar
  19. 19.
    Micheel, F.; Klemer, A.; Baum, G. (mitbearbeitet von Predrag Risticcaron und Fritz Zumbülte), “Synthesen von Zuckeranhydriden aus 1-Fluor- und 1-Azido-zuckern”, Chem. Ber. (1955) 88, 475–479CrossRefGoogle Scholar
  20. 20.
    Barnett, J. E. G., “Acid and alkaline hydrolysis of glycopyranosyl fluorides”, Carbohydr. Res. (1969) 9, 21–31CrossRefGoogle Scholar
  21. 21.
    Yamamoto, K.; Haga, M.; Tejima, S., “Thiosugars. XVIII. Synthesis of 2-acy lamino-1,6-anhydro-2,6-dideoxy-6-thio-β- d -glucopyranose”, Chem. Pharm. Bull. (1975) 23, 233–236Google Scholar
  22. 22.
    Wiśniewski, A.; Madaj, J.; Skorupowa, E.; Sokolowski, J., “1,6-Cyclization reactions of selected aldohexopyranoses via their 1-O-tosyl derivatives”, J. Carbohydr. Chem. (1994) 13, 873–880CrossRefGoogle Scholar
  23. 23.
    Rao, M. V.; Nagarajan, M., “An improved Synthesis of 2, 3, 4,-tri-O-acetyl-1,6-anhydro-β- d -glucopyranose (levoglucosan triacetate)”, Carbohydr. Res. (1987) 162, 141–144CrossRefGoogle Scholar
  24. 24.
    Zàrà-Kacziàn, E.; Deàk, G.; Holly, S., “Mechanism of the stannic chloride-catalyzed conversion of 1,2,3,4-tetra-O-acetyl-β- d -glucopyranose to triacetyllevoglucosan”, Acta Chim. Acad. Sci. Hung. (1983) 113, 379–391; Chem. Abstr. (1983) 99, 176172Google Scholar
  25. 25.
    Kanie, O.; Takeda, T.; Ogihara, Y., “Synthetic studies on oligosaccharide of a glycolipid from the spermatozoa of bivalves. Part V. A convenient synthesis of 2,3-di-O-acetyl-1,6-anhydro-β- d -glucopyranose”, J. Carbohydr. Chem. (1990) 9, 159–165CrossRefGoogle Scholar
  26. 26.
    Katano, K.; Chang, P.-I.; Millar, A.; Pozsgay, V.; Minster, D. K.; Ohgi, T.; Hecht, S. M., “Synthesis of the carbohydrate moiety of bleomycin. 1,3,4,6-Tetra-O-substituted L-gulose derivatives”, J. Org. Chem. (1985) 50, 5807–5815CrossRefGoogle Scholar
  27. 27.
    Kloosterman, M.; De Nijs, M. P.; Van Boom, J. H., “Synthesis of 1,6-anhydro-2-O-(trifluoromethanesulfonyl)-β- d -mannopyranose derivatives and their conversion into the corresponding 1,6-anhydro-2-azido-2-deoxy-β- d -glucopyranoses: a convenient and efficient approach”, J. Carbohydr. Chem. (1986) 5, 215–233CrossRefGoogle Scholar
  28. 28.
    Sondheimer, S. J.; Eby, R.; Schuerch, C., “A synthesis of 1,6-anhydro-2,3,4-tri-O-benzyl-β- d -mannopyranose”, Carbohydr. Res. (1978) 60, 187–192CrossRefGoogle Scholar
  29. 29.
    Zottola, M. A.; Alonso, R.; Vite, G. D.; Fraser-Reid, B., “A practical, efficient large-scale synthesis of 1,6-anhydrohexopyranose”, J. Org. Chem. (1989) 54, 6123–6125CrossRefGoogle Scholar
  30. 30.
    Lafont, D.; Boullanger, P.; Cadas, O.; Descotes, G., “A mild procedure for the preparation of 1,6-Anhydro-β- d -hexopyranoses and derivatives”, Synthesis (1989) 191–194Google Scholar
  31. 31.
    Guthrie, R. D. in Pigman, W.; Horton, D. (Eds.), The Carbohydrates: The Chemistry and Biochemistry, 2nd ed., Vol. 1A, Academic Press, New York, 1972, pp. 423–478;Google Scholar
  32. 32.
    Staněk, J.; Černý, M.; Kocourek, J.; Pacák, J., The Monosaccharides, Publishing House of Czechoslovak Academy of Sciences, Prague, 1963, pp. 358–383Google Scholar
  33. 33.
    Dimler, R. J., “1,6-Anhydrohexofuranoses, a new class of hexosans”, Adv. Carbohydr. Chem. (1952) 7, 37–52Google Scholar
  34. 34.
    Matsumoto, K.; Ebata, T.; Koseki, K.; Kawakami, H.; Matsushita, H., “Synthesis of D-allosan from levoglucosenone”, Heterocycles (1991) 32, 2225–2240CrossRefGoogle Scholar
  35. 35.
    Černý, M.; Kalvoda, L.; Pacák, J., “Syntheses with anhydro sugars. V. Preparation of 2,4-di-O-substituted 1,3-anhydro-β- d -hexopyranos-3-uloses, their isomerization, and reduction”, Collect.Czech. Chem. Commun. (1968) 33, 1143–1156Google Scholar
  36. 36.
    Pratt, J. W.; Richtmyer, N. K., “Transformation of D-Allose to 1,6-Anhydro-β- d -allopyranose in acid solution”, J. Am. Chem. Soc. (1955) 77, 1906–1908CrossRefGoogle Scholar
  37. 37.
    Matsumoto, K.; Ebata, T.; Koseki, K.; Kawakami, H.; Matsushita, H., “Synthesis of D-altrose via D-altrosan from levoglucosenone”, Bull. Chem. Soc. Jpn. (1991) 64, 2309–2310CrossRefGoogle Scholar
  38. 38.
    Richmyer, N. K.; Hudson, C. S., “The ring structure of D-Altrosan”, J. Am. Chem. Soc. (1940) 62, 961–964CrossRefGoogle Scholar
  39. 39.
    Furneaux, R. H.; Shafizadeh, F., “Pyrolytic production of 1,6-anhydro-β- d -manno pyranose”, Carbohydr. Res. (1979) 74, 354–360CrossRefGoogle Scholar
  40. 40.
    Georges, M.; Fraser-Reid, B., “A simple, one-flask, two-step synthesis of 1,6-anhydro-β- d -mannopyranose (D-mannosan) from D-mannose”, Carbohydr. Res. (1984) 127, 162–164CrossRefGoogle Scholar
  41. 41.
    Montgomery, E. M.; Richtmyer, N. K.; Hudson, C. S., “The Alkaline Degradation of Phenylglycosides; a New Method for Determining the Configuration of Glycosides and Sugars”, J. Am. Chem. Soc. (1943) 65, 3–7CrossRefGoogle Scholar
  42. 42.
    Stewart, L. C.; Richtmyer, N. K., “Transformation of D-Gulose to 1,6-Anhydro-β- d -gulopyranose in Acid Solution”, J. Am. Chem. Soc. (1955) 77, 1021–1024CrossRefGoogle Scholar
  43. 43.
    Sorkin, E.; Reichstein, T., “D-Idose aus D(+)-Galaktose”, Helv. Chim. Acta (1945) 28, 1–17CrossRefGoogle Scholar
  44. 44.
    Heyns, K.; Weyer, J.; Paulsen, H., “Über selektive katalytische Oxydationen, XXIV. Selektive katalytische Oxydation von 1.6-Anhydro-β- d -hexopyranosen zu 1.6-Anhydro-β- d -hexopyranos-ulosen”, Chem. Ber. (1967) 100, 2317–2334CrossRefGoogle Scholar
  45. 45.
    Černý, M.; Staněk, Jr., J., “1, 6-Anhydro derivatives of Aldohexoses”, Adv. Carbohydr. Chem. (1977) 34, 23–177CrossRefGoogle Scholar
  46. 46.
    Černý, M.; Gut, V.; Pacák, J., “Partial substitution of 1,6-anhydro-β- d -glucopyranose”, Collect. Czech. Chem. Commun. (1961) 26, 2542–2550Google Scholar
  47. 47.
    Paulsen, H.; Kolář, Č.; Stenzel, W., “Bausteine von Oligosacchariden, XI: Synthese α-glycosidisch verknüpfter Disaccharide der 2-Amino-2-desoxy- d -galactopyranose”, Chem. Ber. (1978) 111, 2358–2369CrossRefGoogle Scholar
  48. 48.
    McLeod, J. M.; Schroeder, L. R.; Seib, P. A., “Selective esterification of 1,6-anhydrohexopyranoses: The possible role of intramolecular hydrogen-bonding”, Carbohydr. Res. (1973) 30, 337–347CrossRefGoogle Scholar
  49. 49.
    Blanc-Muesser, M.; Defaye, J.; Driguez, H., “Stereoselective thioglycoside syntheses. Part 4. A new approach to 1,4-linked 1-thio-disaccharides and a synthesis of thiomaltose”, J. Chem. Soc. Perkin Trans. (1982) 1, 15–18CrossRefGoogle Scholar
  50. 50.
    Auzanneau, F.-I.; Bennis, K.; Fanton, E.; Promé, D.; Defaye, J.; Gelas, J., “Synthesis of S-linked thiooligosaccharide analogues of Nod factors. Part 1: selectively N-protected 4-thiochitobiose precursors”, J. Chem. Soc. Perkin Trans. (1998) 1 , 3629–3636CrossRefGoogle Scholar
  51. 51.
    Jeanloz, R. W.; Rapin, A. M. C., “The Ammonolysis of 1,6-Anhydro-2,4-di-O-p-tolylsulfonyl-β- d -glucopyranose and the Synthesis of 2,4-Diamino-2,4-dideoxy- d -glucose”, J. Org. Chem. (1963) 28, 2978–2983CrossRefGoogle Scholar
  52. 52.
    Holla, E. W.; Sinnwell, V.; Klaffke, W.,“Two syntheses of 3-Azido-3-deoxy- d -mannose”, Synlett (1992) 413–414Google Scholar
  53. 53.
    Brimacombe, J. S.; Hunedy, F.; Mather, A. M.; Tucker, L. C. N., “Studies related to the synthesis of derivatives of 2,6-diamino-2,3,4,6-tetradeoxy- d -erythro-hexose (purpurosamine C), a component of gentamicin C 12”, Carbohydr. Res. (1979),68, 231–238CrossRefGoogle Scholar
  54. 54.
    Sakari, N.; Takahashi, S.; Wang, F.; Ueno, Y.; Kuzuhara, H., “Facile preparation of 1,6-anhydro-2-azido-3-O-benzyl-2-deoxy-β- d -glucopyranose and its 4-O-substituted derivatives.”, Bull. Chem. Soc. (Japan) (1994) 67, 1756–1758CrossRefGoogle Scholar
  55. 55.
    Haradahira, T.; Maeda, M.; Kai, Y.; Kojima, M., “A new, high yield synthesis of 2-deoxy-2-fluoro- d -glucose”, J. Chem. Soc. Chem. Commun. (1958) 364–365Google Scholar
  56. 56.
    Černý, M.; Staněk, Jr.; Pacák, J., “Syntheses with anhydro sugars. VII. Deoxy sugars. 4. Preparation of 4-deoxy- d -ribo-hexose (4-deoxy- d -allose), 4-deoxy- d -lyxo-hexose (4-deoxy- d -mannose), and their 1,6-anhydro derivatives”, Collect. Czech. Chem. Commun. (1969) 34, 1750–1764Google Scholar
  57. 57.
    Freudenberg, K.; Kuhn, W.; Dürr, W.; Bolz, F.; Steinbrunn, G., “Die Hydrolyse der Polysaccharide (14. Mitteil. über Lignin und Cellulose)”, Chem. Ber. (1930) 63, 1510–1530Google Scholar
  58. 58.
    Freudenberg, K.; Nagai, W., “Die synthese der Cellobiose”, Chem. Ber. (1933) 66, 27–29Google Scholar
  59. 59.
    Hall, H. ; Jr., K.; DeBlauwe, F., “2,6- and 2,7-Dioxabicyclo[2.2.1]heptanes”, J. Am. Chem. Soc. (1975) 97, 655–656Google Scholar
  60. 60.
    Koto, S.; Uchida, T.; Zen, S., “Synthesis of isomaltose, isomaltotetraose, and iso maltooctaose”, Chem. Lett. (1972) 1049–1052Google Scholar
  61. 61.
    Koto, S.; Uchida, T.; Zen, S., “Synthesis of isomaltose, isomaltotetraose, and isomaltooctaose”, Bull Chem. Soc. (Japan) (1973) 46, 2520–2523CrossRefGoogle Scholar
  62. 62.
    Ohle, H.; Spencker, K., “Über die Aceton-Verbindungen der Zucker und ihre Derivate, VII.: Die Konstitution einiger Mono-acyl-derivate der Mono-aceton-glucose und die Ringstruktur der Glucose”, Chem. Ber. (1926) 59, 1836–1848Google Scholar
  63. 63.
    Bergmann, M.; Koch, F. K. v., “Notiz über Gewinnung gemischt-acylierter Zucker”, Berichte (1929) 62, 311–313Google Scholar
  64. 64.
    Josephson, K., “Neue Acylderivate der Glucose und des β-Methyl-glucosids aus Levoglucosan”, Chem. Ber. (1929) 62, 317–321Google Scholar
  65. 65.
    Jeans, A.; Wilham, C. A.; Hilbert, G. E., “Acetobrominolysis of Di- and Polysaccharide Acetates”, J. Am. Chem. Soc. (1953) 75, 3667–3673CrossRefGoogle Scholar
  66. 66.
    Csürös, Z.; Deák, G.; Haraszthy-Papp, M., “Reaction of levoglucosan [1,6-anhydro-β- d -glucopyranose]esters with hydrogen bromide and with acid bromides in glacial acetic acid”, Acta Chim. Acad. Sci. Hung. (1961) 29, 227–235Google Scholar
  67. 67.
    Freudenberg, K.; Soff, K., “Über den Abbau der Stärke mit Acetylbromid”, Chem. Ber. (1936) 69, 1252–1257Google Scholar
  68. 68.
    Zemplén, G.; Gerecs, A., “Einwirkung von Quecksilbersalzen auf Aceto-halogen zucker, VI. Mitteil.: Synthese von Gentionbiose- und Cellobiosido-6-Glykose-Derivaten”, Chem. Ber. (1931) 64, 1545–1554Google Scholar
  69. 69.
    Haq, S.; Whelan, W. J., “The chemical synthesis of polysaccharides. Part I. Synthesis of gentiodextrins”, J. Chem. Soc. (1956) 4543–4549Google Scholar
  70. 70.
    Zemplén, G.; Csürös, Z, “Aufspaltung des Laevoglykosans mit Titantetrachlorid”, Chem. Ber. (1929) 62, 993–996Google Scholar
  71. 71.
    Zemplén, G.; Gerecs, A.; Flesch, H., “Einwirkung von Quecksilbersalzen auf Actohalogen-Zucker, XI. Mitteil.: Synthese einiger Derivate der β-1- l -rhamnosido-6- d -galaktose”, Chem. Ber. (1938) 71, 774–776Google Scholar
  72. 72.
    Thompson, A.; Wolfrom, M. L.; Inatome, M., “Tetraacetates of D-Glucose and D-Galactose”, J. Am. Chem. Soc. (1955) 77, 3160–3161CrossRefGoogle Scholar
  73. 73.
    Zemplén, G.; Gerecs, Á.; Valatin, T., “Über Lävomannosan”, Chem. Ber. (1940) 73, 575–580Google Scholar
  74. 74.
    Carbohydrates (IUPAC-IUBMB) recommendations 1996, Carbohydr. Res. (1997) 297, 1–92CrossRefGoogle Scholar
  75. 75.
    Kops, J.; Schuerch, C., “Syntheses of 1,4-Anhydro-2,3,6-tri-O-methyl- d -galactose and 1,4-Anhydro-2,3-di-O-methyl- l -arabinose”, J. Org. Chem. (1965) 30, 3951–3953CrossRefGoogle Scholar
  76. 76.
    Brimacombe, J. S.; Minshall, J.; Tucker, L. C. N., “Nucleophilic displacement reactions in carbohydrates. Part XXII. Formation of 1,4-anhydropyranoses from 1-O-acetyl-6-deoxy-2,3-O-isopropylidene-4-O-methylsulphonyl-α- l -manno- and talo-pyranose with sodium azide”, J. Chem. Soc. Perkin 1 (1973) 2691–2694CrossRefGoogle Scholar
  77. 77.
    Bullock, C.; Hough, L.; Richardson, A. C., “A novel route to 1,4-anhydro derivatives of β-image-galactopyranose”, Carbohydr. Res. (1990) 197, 131–138CrossRefGoogle Scholar
  78. 78.
    Dessinges, A.; Castillon, S.; Olesker, A.; Thang, T. T.; Lukacs, G., “Oxygen-17 NMR and oxygen-18-induced isotopic shifts in carbon-13 NMR for the elucidation of a controversial reaction mechanism in carbohydrate chemistry”, J. Am. Chem. Soc. (1984) 106, 450–451CrossRefGoogle Scholar
  79. 79.
    Hess, K.; Heumann, K. E., “Über ein weiteres Anhydrid aus 2.3.6.-Trimethyl-glucose (IX. Mitteil. über synthetische Zucker-anhydride)”, Chem. Ber. (1939) 72, 137–148Google Scholar
  80. 80.
    Nokami, T.; Werz, D. B.; Seeberger, P. H., “Synthesis and Reactions of 1,4-Anhydro galactopyranose and 1,4-Anhydroarabinose – Steric and Electronic Limitations”, Helv. Chim. Acta (2005) 88, 2823–2831CrossRefGoogle Scholar
  81. 81.
    Lowary, T. L., “Mycobacterial Cell Wall Components”, in Glycoscience III, Fraser-Reid, B.; Tatsuta, K.; Thiem, J. (Eds.), Springer, Berlin, 2001, pp. 2005–2080Google Scholar
  82. 82.
    Aberg, P.-M.; Ernst, B., “Facile preparation of 1,6-anhydrohexoses using solvent effects and a catalytic amount of a Lewis acid”, Acta Chem. Scand. (1994) 48, 228–233CrossRefGoogle Scholar
  83. 83.
    Brigl, P., “Carbohydrates. II. A new anhydride of glucose”, Hoppe-Seyler’s Z. physiol. Chem. (1922) 122, 245–262Google Scholar
  84. 84.
    Lemieux, R. U.; Huber, G., “A chemical synthesis of sucrose”, J. Am. Chem. Soc. (1953) 75, 4118–4118Google Scholar
  85. 85.
    Lemieux, R. U.; Huber, G., “A chemical synthesis of sucrose. A conformational analysis of the reactions of 1,2-Anhydro-α- d -glucopyranose Triacetate”, J. Am. Chem. Soc. (1956) 78, 4117–4119CrossRefGoogle Scholar
  86. 86.
    Hickinbottom, W. J., “Glucosides. Part I. The formation of glucosides from 3:4:6-triacetyl glucose 1:2-anhydride”, J. Chem. Soc. (1928) 3140–3147Google Scholar
  87. 87.
    Haworth, W. N.; Hickinbottom, W. J., “Synthesis of a new disaccharide, neotrehalose”, J. Chem. Soc. (1931) 2847–2850Google Scholar
  88. 88.
    Hardegger, E.; De Pascual, J., “Glucoside und β-1,3,4,6-Tetraacetyl-glucose aus Triacetyl-glucosan-α<1,2>β<1,5>”, Helv. Chim. Acta (1948) 31, 281–286CrossRefGoogle Scholar
  89. 89.
    Alt, G. H.; Barton, D. H. R., “Some conformational aspects of neighbouring-group participation”, J. Chem. Soc. (1954) 4284–4294Google Scholar
  90. 90.
    James, S. P.; Smith, F.; Stacey, M.; Wiggins, L. F., “The action of alkaline reagents on 2:3-1:6- and 3:4-1: 6-dianhydro β-talose. A constitutional synthesis of chondrosamine and other amino-sugar derivatives”, J. Chem. Soc. (1946) 625–628Google Scholar
  91. 91.
    Hann, R. M.; Hudson, C. S., “An Anhydro derivative of D-Mannosan <1,5>β<1,6> (presumably 3,4-Anhydro- d -talosan <1,5>β<1,6>)”, J. Am. Chem. Soc. (1942) 64, 925–928CrossRefGoogle Scholar
  92. 92.
    Richtmyer, N. K.; Hudson, C. S., “Crystalline α-Methyl- d -altroside and some new derivatives of D-Altrose”, J. Am. Chem. Soc. (1941) 63, 1727–1731CrossRefGoogle Scholar
  93. 93.
    Robertson, G. J.; Whitehead, W., “Walden inversion in the altrose series”, J. Chem. Soc. (1940) 319–323Google Scholar
  94. 94.
    Angyal, S. J.; Gilham, P. T., “Cyclitols. Part VII. Anhydroinositols and the epoxide migration”, J. Chem. Soc., 1957, 3691–3699Google Scholar
  95. 95.
    Honeyman, J.; Morgan, J. W. W., Sugar nitrates. Part II. The preparation and reactions of some nitrates, sulphonates, sulphinates, and other esters of methyl 4:6-O-benzylidene-α- d -glucoside”, J. Chem. Soc. (1955) 3660–3674Google Scholar
  96. 96.
    Sorkin, E.; Reichstein, T., “d-Idose aus d(+)-Galaktose”, Helv. Chim. Acta (1945) 28, 1–17CrossRefGoogle Scholar
  97. 97.
    Gyr, M.; Reichstein, T., “α-Methyl-d-idosid-<1,5>-monomethyläther-(2) und (3)”, Helv. Chim. Acta (1945) 28, 226–233CrossRefGoogle Scholar
  98. 98.
    Ohle, H.; Thiel, H., “Über Aceton-Verbindungen der Zucker und ihre Umwand-lungsprodukte, XVIII. Mitteil.: 6-p-Toluolsulfo- d -galaktose und 3.6-Anhydro- d -galaktose”, Chem. Ber. (1933) 66, 525–532Google Scholar
  99. 99.
    Parker, R. E.; Isaacs, N. S., “Mechanisms of epoxide reactions”, Chem. Rev. (1959) 59, 737–799CrossRefGoogle Scholar
  100. 100.
    Newth, F. H., “Sugar epoxides”, Quart. Rev. (1959) 13, 30–47CrossRefGoogle Scholar
  101. 101.
    Mills, J. A., “Stereochemistry of cyclic derivatives of carbohydrates”, Adv. Carbohydr. Chem.(1955) 10, 1–53CrossRefGoogle Scholar
  102. 102.
    Newth, F. H.; Richards, G. N.; Wiggins, L. F., “The action of Grignard reagents on anhydro-sugars of ethylene oxide type. Part I. The behaviour of derivatives of α-methyl-2:3-anhydroalloside towards methylmagnesium iodide”, J. Chem. Soc. (1950) 2356–2364Google Scholar
  103. 103.
    Richards, G. N.; Wiggins, L. F., “The action of Grignard reagents on anhydro-sugars of ethylene oxide type. Part II. The behaviour of 4: 6-benzylidene 2: 3-anhydro-α-methyl- d -alloside towards ethyl- and phenyl-magnesium halides”, J. Chem. Soc. (1953) 2442–2446Google Scholar
  104. 104.
    Richards, G. N.; Wiggins, L. F.; Wise, W. S., “The reaction of magnesium halides with αβ-anhydro-sugars”, J. Chem. Soc. (1956) 496–500Google Scholar
  105. 105.
    Foster, A. B.; Overend, W. G.; Stacey, M.; Vaughn, G., “Structure and reactivity of anhydro-sugars. Part I. Branched-chain sugars. Part I. Action of diethylmagnesium on methyl 2: 3-anhydro 4: 6-O-benzylidene-α- d -mannoside”, J. Chem. Soc. (1953) 3308–3313Google Scholar
  106. 106.
    Austin, P. W.; Buchanan, J. G.; Oakes, E. M., “Reaction of methyl 2,3-anhydro- d -ribofuranosides with nucleophiles”, Chem. Commun. (1965) 374–375Google Scholar
  107. 107.
    Kochetkov, N. K.; Kudryashov, L. I.; Klyagina, A. P., “Monosaccharides. II. Reaction of methyl 2,3-anhydro-4,6-O-benzylidene-α- d -allopyranoside with sodium malonic ester”, Zhur. Obshch. Khim. (1962) 32, 410–413Google Scholar
  108. 108.
    Dahlgard, M., “Methyl 3,4-Anhydro-β- d -galactopyranoside. III. Reaction with Hydrogen Sulfide”, J. Org, Chem. (1965) 30, 4352–4353CrossRefGoogle Scholar
  109. 109.
    Dahlgard, M.; Chastain, B. H.; Han, R.-J. L., “Methyl 3,4-Anhydro-β- d -galacto pyranoside. II. Reaction with Methanethiol”, J. Org. Chem. (1962) 27, 932–934CrossRefGoogle Scholar
  110. 110.
    Dahlgard, M.; Chastain, B. H.; Han, R.-J. L., “Methyl 3,4-Anhydro-β- d -galacto-pyranoside. I. Reduction”, J. Org. Chem. (1962) 27, 929–931CrossRefGoogle Scholar
  111. 111.
    Müller, A., “Über das Anhydro-β-methylhexosid aus Triacetyl-4-toluolsulfonyl-β-methylglucosid”, Berichte (1934) 67, 421–424Google Scholar
  112. 112.
    Müller, A., “Die Waldensche Umkehrung in der Zucker-Gruppe, I. Mitteil.: Die Aufspaltung des 3.4-Anhydro-β-methyl-hexosids”, Chem. Ber. (1935) 68, 1094– 1097Google Scholar
  113. 113.
    Kent, P. W.; Ward, P. F. V., “Synthesis of 4-deoxy- l -ribose from D-lyxose”, J. Chem. Soc. (1953) 416–418Google Scholar
  114. 114.
    Newth, F. H., “O-toluene-p-sulphonyl derivatives of 1:6-anhydro-β- d -altrose and their behaviour towards alkali”, J. Chem. Soc. (1956) 441–447Google Scholar
  115. 115.
    Angyal, S. J.; Gilham, P. T., “Cyclitols. Part VII. Anhydroinositols and the epoxide migration”, J. Chem. Soc. (1957) 3691–3699Google Scholar
  116. 116.
    Černý, M.; Pacàk, J.; Staněk, J., “Syntheses with anhydro sugars. IV. Preparation of 1,6:2,3-dianhydro-β- d -mannopyranose and its isomerization to 1,6:3,4-dianhydro-β- d -altropyranose”, Coll. Czech. Chem. Commun. (1965) 30, 1151–1157Google Scholar
  117. 117.
    Buben, I.; Černý, M.; Pacàk, J., “Syntheses with anhydro sugars. III. Treatment of 1,6:3,4-dianhydro-2-O-(p-tolylsulfonyl)-β- d -galactopyranose with sodium hydroxide”, Coll. Czech. Chem. Commun. (1963) 28, 1569–1578Google Scholar
  118. 118.
    Buchanan, J. G.; Clode, D. M., “Synthesis and properties of 2,3-anhydro- d -mannose and 3,4-anhydro- d -altrose”, J. Chem. Soc. Perkin 1 (1974) 388–394CrossRefGoogle Scholar
  119. 119.
    Jarý, J.; Čapek, K., “Amino sugars. V. Preparation of methyl 3,4-anhydro-6-deoxy-α- d -galactopyranoside derivatives”, Coll. Czech. Chem. Commun. (1966) 31, 315–320Google Scholar
  120. 120.
    Ataie, M.; Buchanan, J. G.; Edgar, A. R.; Kinsman, R. G.; Lyssikatou, M.; Mahon, M. F.; Welsh, P. M., “3,4-Anhydro-1,2-O-isopropylidene-β- d -tagatopyranose and 4,5-anhydro-1,2-O-isopropylidene-β- d -fructopyranose”, Carbohydr. Res. (2000) 323, 36–43CrossRefGoogle Scholar
  121. 121.
    Paulsen, H.; Eberstein, K., “Verzweigte Zucker, XI. Epoxidumlagerungen an verz-weigten Zuckern”, Chem. Ber. (1976) 109, 3891–3906CrossRefGoogle Scholar
  122. 122.
    Al Janabi, S. A. S.; Buchanan, J. G.; Edgar, A. R., “Base-catalysed equilibration and conformational analysis of some methyl 2,3- and 3,4-anhydro-6-deoxy-β- d -hexopyranosides”, Carbohydr. Res. (1974) 35, 151–164CrossRefGoogle Scholar
  123. 123.
    Austin, P. W.; Buchanan, J. G.; Oakes, E. M., “Reaction of methyl 2,3-anhydro- d -ribofuranosides with nucleophiles”, Chem. Commun. (1965) 374–375Google Scholar
  124. 124.
    Buchanan, J. G., “Migration of Epoxide Rings and Stereoselctive Ring Opening of Acetoxyepoxides” in Methods in Carbohydrates Chemistry Vol. 6, Academic Press, New York, (1972) pp. 135–141Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Biochemistry & Molecular BiologyPennsylvania State UniversityHersheyUSA

Personalised recommendations